Notes on “Types of arcs in a fuzzy graph”

Mini Tom¹, M. S. Sunitha², Sunil Mathew²

(1) Department of Mathematics, SCMS School Of Engineering and Technology, Karukutty - 683 582, Kerala, India
(2) Department of Mathematics, National Institute of Technology, Calicut - 673 601, Kerala, India

Abstract
In this note, we show by an example that the theorem stating all paths in a complete fuzzy graph are strongest paths, in the paper titled “Types of arcs in a fuzzy graph” by Mathew and Sunitha is not always true and we provide the correct version of the theorem.

Keywords: strong arc, complete fuzzy graph, strong path, strongest path.

1 Introduction
Fuzzy graphs were introduced by Rosenfeld [5] in 1975. Fuzzy graph theory has numerous applications in modern science and technology especially in the fields of information theory, neural networks, expert systems, cluster analysis, medical diagnosis, control theory, etc. A fuzzy graph [5] is a triplet \(G : (V, \sigma, \mu) \) where \(V \) is the vertex set, \(\sigma \) is a fuzzy subset on \(V \) and \(\mu \) is a fuzzy relation on \(\sigma \) such that \(\mu(u, v) \leq \sigma(u) \wedge \sigma(v) \) \(\forall u, v \in V \). We assume that \(V \) is finite and non empty, \(\mu \) is reflexive and symmetric. In all the examples \(\sigma \) is chosen suitably. Also we denote the underlying crisp graph by \(G^* : (\sigma^*, \mu^*) \) where \(\sigma^* = \{ u \in V : \sigma(u) > 0 \} \) and \(\mu^* = \{ (u, v) \in V \times V : \mu(u, v) > 0 \} \). Here take \(\sigma^* = V \). A fuzzy graph \(G : (V, \sigma, \mu) \) is a complete fuzzy graph (CFG) if \(\mu(u, v) = \sigma(u) \wedge \sigma(v) \) for every \(u, v \in \sigma^* \). A path \(P \) of length \(n \) is a sequence of distinct nodes \(v_0, v_1, ..., v_n \) such that \(\mu(v_{i-1}, v_i) > 0 \), \(i = 1, 2, 3, ..., n \) and the degree of membership of a weakest arc is defined as its strength.
The strength of connectedness between two nodes u and v is defined as the maximum of the strengths of all paths between u and v and is denoted by $\text{CONN}_G(u,v)$. A $u-v$ path P is called a strongest $u-v$ path if its strength equals $\text{CONN}_G(u,v)$. A fuzzy graph $G : (V, \sigma, \mu)$ is connected if for every u,v in σ^*, $\text{CONN}_G(u,v) > 0$. A weakest node of $G : (V, \sigma, \mu)$ is a node with least membership value. Throughout in this paper, we assume that G is connected. An arc of a fuzzy graph is called strong if its weight is at least as great as the connectedness of its end nodes when it is deleted and a $u-v$ path is called a strongest $u-v$ path if its strength equals $\text{CONN}_G(u,v)$.

2 Preliminaries and notations

Depending on the $\text{CONN}_G(u,v)$ of an arc (u,v) in a fuzzy graph G the following different types of arcs are defined [6].

Definition 2.1. An arc (u,v) in G in called $\alpha-$strong if $\mu(u,v) > \text{CONN}_{G-\{(u,v)\}}(u,v)$.

Definition 2.2. An arc (u,v) in G in called $\beta-$strong if $\mu(u,v) = \text{CONN}_{G-\{(u,v)\}}(u,v)$.

Definition 2.3. An arc (u,v) in G in called a $\delta-$arc if $\mu(u,v) < \text{CONN}_{G-\{(u,v)\}}(u,v)$.

Definition 2.4. A $\delta-$arc (u,v) is called a δ^*-arc if $\mu(u,v) > \mu(x,y)$ where (x,y) is a weakest arc of G.

![Figure 1: Graph showing different types of arcs and strongest strong paths](image-url)

Example 2.1. Here arcs (v,x) and (v,w) are $\alpha-$strong arcs, (u,v) and (u,x) are $\beta-$strong arcs, and (w,u) and (w,x) are $\delta-$arcs. Arc (w,x) is a δ^*-arc. The path $u-x-v-w$ is a strongest strong path. The path $u-x-w$ is a strongest path but not a strong path since the arc (x,w) is a δ^*-arc. In the above example if we replace $\mu(w,x) = 0.4$ then arc (w,x) will be a $\beta-$strong arc. Then the path $v-x-w$ will be a strong path which is not strongest since $\text{CONN}_{G}(v,w) = 0.6$ and strength of path $v-x-w$ is 0.4.

3 Strongest path in a complete fuzzy graph

Note that in a CFG all arcs are strong and hence all paths are strong paths [2, 6]. Theorem 11 of [6] states that in a CFG without $\alpha-$strong arcs, all paths are strongest paths. The following example shows that this is not always true.

Journal of Uncertainty in Mathematics Science
http://www.ispacs.com/journals/jums/2014/jums-00004/

Page 2 of 4

International Scientific Publications and Consulting Services
Figure 2: A Complete Fuzzy Graph without α-strong arcs

Example 3.1. Here all arcs are β-strong arcs. But all paths are not strongest paths. Note that $\text{CONN}_G(v, x) = 0.6$ and the arc $v \rightarrow x$ and the path $v \rightarrow w \rightarrow x$ are the only strongest $v \rightarrow x$ paths. All other strong $v \rightarrow x$ paths are not strongest.

Based on the above observation we have the following theorem.

Theorem 3.1. Let $G : (V, \sigma, \mu)$ be a complete fuzzy graph and let P be any $u \rightarrow v$ path. Then P is a strongest $u \rightarrow v$ path if and only if either u or v is a weakest node in the path.

Proof. Consider a CFG $G : (V, \sigma, \mu)$ and P any $u \rightarrow v$ path for some $u, v \in \sigma^*$. Since G is complete, then

$$\text{CONN}_G(u, v) = \mu(u, v).$$

Let u be a weakest node in P. Then by definition of CFG, $\mu(u, v) = \sigma(u)$. Let (x, y) be an arc in the path P. Then by definition, $\mu(x, y) = \sigma(x) \land \sigma(y)$. Since $\sigma(x) \geq \sigma(u)$ and $\sigma(y) \geq \sigma(u)$ we have, $\mu(x, y) \geq \mu(u, v)$.

Then by definition, we have Strength of $P = \mu(u, v)$. From Eq. (3.1), we see that Strength of $P = \text{CONN}_G(u, v)$. By definition of strongest path, P is a strongest $u \rightarrow v$ path. Proof is similar if v is a weakest node in P.

Conversely, let P be a strongest $u \rightarrow v$ path in G. Assume that neither u nor v is a weakest node in the path P. Let x be a weakest node in P. Consider an arc (x, y) in P, where y is a node in P. Then by definition, $\mu(x, y) = \sigma(x)$. Since $\sigma(x) < \sigma(u)$ and $\sigma(x) < \sigma(u)$ we have, $\mu(x, y) < \mu(u, v)$. Then by definition of strength of a path, Strength of $P = \mu(x, y)$. From Eq. (3.1) we get Strength of $P \neq \text{CONN}_G(u, v)$. By definition, P is not a strongest path, which is a contradiction. Hence either u or v is a weakest node in the path P.

Example 3.2. Note that, in Fig. 3, u is the weakest node of the CFG. Here $\text{CONN}_G(u, x) = 0.4$. The $u \rightarrow x$ paths are
1. $P_1 : u - x$
2. $P_2 : u - v - x$
3. $P_3 : u - w - x$
4. $P_4 : u - v - w - x$
5. $P_5 : u - w - v - x$

Strength of each of these paths is 0.4 and hence all are strongest paths. Now consider any other node v of the CFG in Fig 3. Note that $\text{CONN}_G(v, w) = 0.6$. The $v - w$ paths are,

1. $P_1 : v - w$
2. $P_2 : v - x - w$
3. $P_3 : v - u - w$
4. $P_4 : v - u - x - w$
5. $P_5 : v - x - u - w$

Here only P_1 and P_2 have strength 0.6 each and both are strongest paths. The strength of each of P_3, P_4 and P_5 is 0.4 and hence P_3, P_4 and P_5 are not strongest paths. Note that nodes v and w are not weakest nodes in P_3, P_4 and P_5.

4 Conclusion

In this paper, we have shown by an example that all paths in a complete fuzzy graph are not always strongest paths and also we have proved the necessary and sufficient condition for a path in a CFG to be a strongest path.

References

http://dx.doi.org/10.1016/0167-8655(89)90049-4

http://dx.doi.org/10.1016/S0020-0255(02)00411-5

http://dx.doi.org/10.1007/978-3-7908-1854-3

http://dx.doi.org/10.1016/j.ins.2009.01.003