Weak* almost Dunford-Pettis operators in Banach lattices

H. Ardakani¹*, M. Salimi¹, S. M. S. Modarres Mosadegh¹

(¹Department of Mathematics, University of Yazd, Yazd, IRAN.

Abstract

We introduce and study the class of weak* almost Dunford-Pettis operators. As an application, we characterize Banach lattices with the weak DP* property. Also, we establish some sufficient conditions under which the class of order bounded weak* almost Dunford-Pettis operator coincide with that of almost limited. Finally, we derive some interesting results.

Keywords: Weak* Dunford-Pettis operator, Weak* almost Dunford-Pettis operator, Almost limited operator, Almost limited set, Weak Dp* property.

1 Introduction

Throughout this paper E and F will denote real Banach lattices. B_E is the closed unit ball of E and sol (A) denotes the solid hull of a subset A of a Banach lattice. We will use the term operator T : E → F between two Banach spaces to mean a bounded linear mapping. It is positive if T(x) ≥ 0 in F whenever x ≥ 0 in E. The objective of this paper is to study the class of weak* almost Dunford-Pettis operators. Also, we derive the following interesting consequences:

1. some characterizations of the class of weak* almost Dunford-Pettis operators;
2. some characterizations of the weak DP* property;
3. the coincidence of this class of operators with that of almost limited operators;
4. the domination property of the class of weak* almost Dunford-Pettis operators.

To state our results, we need to fix some notation and recall some definitions. A Riesz space (or a vector lattice) is an ordered vector space E with the additional property that for each pair of vectors x, y ∈ E the supremum and the infimum of the set \{x, y\} both exist in E. Following the classical notation, we shall write \(x \vee y := \sup \{x, y\} \) and \(x \wedge y := \inf \{x, y\} \). A Banach lattice E is a Banach space \((E, \|\|)\) such that E is a vector lattice and its norm satisfies the following property:

For each x, y ∈ E such that \(|x| \leq |y| \), we have \(\|x\| \leq \|y\| \).

If E is a Banach lattice, its topological dual \(E' \), endowed with the dual norm, is also a Banach lattice. A norm \(\|\| \) of a Banach lattice E is order continuous if for each generalized nets \((x_\alpha)\) such that \((x_\alpha) \nexists 0 \) in E, \((x_\alpha)\) converges to 0 for the norm \(\|\| \) where the notation \((x_\alpha) \nexists 0 \) means that the \((x_\alpha) \) is decreasing, its infimum exists and \(\inf (x_\alpha) = 0 \). A Riesz space is said to be σ-Dedekind complete if every countable subset that is bounded above has a supremum (or, equivalently, whenever \(0 \leq x_\alpha \uparrow \leq x \) implies the existence of \(\sup \{x_\alpha\} \)). The lattice operations in a Banach lattice E are weakly sequentially continuous if for every weakly null sequence \((x_\alpha)\) in E, \(|x_\alpha| \to 0 \) for σ(E, E'). The lattice operations in a Banach lattice \(E' \) are weakly sequentially continuous if for every weak* null sequence \((f_\alpha)\) in \(E' \), \(|f_\alpha| \to 0 \)

*Corresponding author. Email address: halimeh.ardakani@yahoo.com
for $\sigma(E',E)$. We refer the reader to [1] and [6] for unexplained terminologies on Banach lattice theory and positive operators.

2 A brief review

To be able to obtain the main results, a brief review of the literature is presented. As many Banach spaces do not have the Dunford-Pettis property, a weak notion is introduced, called the weak Dunford-Pettis property. A Banach space E has the Dunford-Pettis property if every weakly compact operator defined on E (and taking their values in a Banach space F) is Dunford-Pettis. Similarly, a Banach lattice E has the weak Dunford-Pettis property if every weakly compact operator defined on E is almost Dunford-Pettis, that is, the sequence $(\|T(x_n)\|)$ converges to 0 for every weakly null sequence (x_n) consisting of pairwise disjoint elements in E. It is obvious that if E has the Dunford-Pettis property, then it has the weak Dunford-Pettis property. Let us recall from [1] that an operator T from a Banach space X into another Y is called weak Dunford-Pettis if the sequence $(f_n(T(x_n)))$ converges to 0 whenever (x_n) converges weakly to 0 in X and (f_n) converges weakly to 0 in Y^*. Alternatively, T is weak Dunford-Pettis if T maps relatively weakly compact sets of X into Dunford-Pettis sets of Y (see Theorem 5.99 of [1]). A norm bounded subset A of a Banach lattice E is said to be Dunford-Pettis if every weakly null sequence (f_n) of E^* (the topological dual of E) converges uniformly to zero on the set A, that is, $sup_{x\in A}\|f_n(x)\| \rightarrow 0$ (see Theorem 5.98 of [1]). A norm bounded subset A of a Banach space X is said to be limited if every weak* null sequence (x_n) of X^* converges uniformly on A, that is, $sup_{x\in A}\|f(x_n)\| \rightarrow 0$. Note that every relatively compact set is limited but the converse is not true in general. In fact, the set $\{e_n : n \in \mathbb{N}\}$ of unit coordinate vectors is a limited set in l^∞ which is not relatively compact. Also we recall from [3] that a norm bounded subset A of E is said to be an almost limited set if every disjoint, weak* null sequence (f_n) of E^* converges uniformly to zero on A, that is, $sup_{x\in A}\|f_n(x)\| \rightarrow 0$. A Banach lattice E has the dual positive Schur property, if every positive weak* null sequence in E converges uniformly to zero on the set A, that is, $sup_{x\in A}\|f(x)\| \rightarrow 0$ (see Theorem 5.98 of [1]). A norm bounded subset A of a Banach space X is said to be almost limited in F.

3 Main results

Following Zi Li Chen [3] a norm bounded subset A of E is said to be an almost limited set if every disjoint, weak* null sequence (f_n) of E^* converges uniformly to zero on A, that is, $sup_{x\in A}\|f_n(x)\| \rightarrow 0$. Also by [3] an operator T from a Banach space X into a Banach lattice F is said to be almost limited if the set $T(B_X)$ is almost limited in F.

Theorem 3.1. For an operator T from a Banach space X into a Banach lattice F, the following statements are equivalent:

1. T is a weak* almost Dunford-Pettis operator.
(2) If S is a weakly compact operator from an arbitrary Banach space Z into X, then the operator product $T \circ S$ is almost limited.

(3) If S is a weakly compact operator from l^1 into X, then the operator product $T \circ S$ is almost limited.

(4) For all weakly null sequence $(x_n) \subseteq X$, and for all disjoint weak* null sequence (f_n) in F^* it follows that $f_n(T(x_n)) \to 0$.

Proof. (1 \to 2). Since S is a weakly compact operator then $S(B_Z)$ is a weakly compact set. On the other hand, as T is a weak* almost Dunford-Pettis operator, $T(S(B_Z))$ is an almost limited set and hence $T \circ S$ is almost limited.

(2 \to 3). Obvious.

(3 \to 4). Let (x_n) in X be a weakly null sequence and let (f_n) in F^* be a disjoint weak* null sequence. By Theorem 5.26 [1], the operator $S : l^1 \to X$ defined by $S((\lambda_i)_{i=1}^{\infty}) = \sum_{i=1}^{\infty} \lambda_i x_i$ for each $(\lambda_i)_{i=1}^{\infty} \in l^1$, is weakly compact. Thus, by our hypothesis $T \circ S$ is almost limited and hence $\|(T \circ S)(f_n)\| \to 0$ and the desired conclusion follows from the inequality

$$|f_n(T(x_n)) - f_n(T(S(e_n))))| \leq \sup_{(\lambda_i) \in B_1} |f_n(TS(\lambda_i))| = \|(T \circ S)(f_n)\|$$

for each n, where $(e_i)_{i=1}^{\infty}$ is the canonical basis of l^1.

(4 \to 1). Let W be a relatively weakly compact subset of X, and let (f_n) be a disjoint weak* null sequence in F^*. If (f_n) does not converge uniformly to zero on $T(W)$, then there exist a sequence (x_n) of W, a subsequence of (f_n) (which we shall denote by (f_n) again), and some $\varepsilon > 0$ satisfying $|f_n(T(x_n))| > \varepsilon$ for all n. Since W is weakly compact, we can assume that $(x_n) \to x$ weakly in X. Then $T(x_n) \to T(x)$ weakly in F and so, by our hypothesis, we have

$$0 < \varepsilon < |f_n(T(x_n))| \leq |f_n(T(x_n) - x)| + |f_n(T(x))| \to 0,$$

which is impossible. Thus (f_n) converges uniformly to zero on $T(W)$ and this shows that $T(W)$ is an almost limited set. This ends the proof of the Theorem.

Let us recall that, an operator T from a Banach lattice E into a Banach lattice F is said to be order bounded if for each $z \in E^+$, the set $T([-z, z])$ is an order bounded set in F. Each order interval $[-z, z]$ of a σ-Dedekind complete Banach lattice E is an almost limited set for each $z \in E^+$. In fact, if (f_n) is a disjoint weak* null sequence in E^*, then by [7], $(|f_n|)$ is a weak* null sequence in E^*. Hence $\sup_{x \in [-z, z]} |f_n(x)| = |f_n(z)| \to 0$ for each $z \in E^+$. As a consequence, if $T : E \to F$ is an order bounded operator from a Banach lattice E into a σ-Dedekind complete Banach lattice F, then $T([-z, z])$ is an almost limited set in F, and then $|f_n o T|(z) = \sup_{y \in T([-z, z])} |f_n(y)| \to 0$ for all disjoint weak* null sequence (f_n) in F^* and for each $z \in E^+$.

Theorem 3.2. Let E and F be two Banach lattices such that the lattice operations of E are weak* sequentially continuous. Then for an order bounded operator from a Banach lattice E into a Banach lattice F, and a norm bounded solid subset A of E the following statements are equivalent:

1. $T(A)$ is an almost limited set.

2. $f_n(T(x_n)) \to 0$ for each disjoint sequence (x_n) in A^+ and for every disjoint weak* null sequence (f_n) of F^*.

Proof. (1 \to 2). It follows from that the inequality

$$|f_n(T(x_n))| \leq \sup_{y \in T(A)} |f_n(y)|.$$

(2 \to 1). Suppose that the sequence (f_n) is a disjoint weak* null sequence in F^*. Since $(T f_n)$ is a weak* null sequence in E^* and E^* has the weak* sequentially continuous lattice operations, then $(|T^* f_n|)$ is also a weak* null sequence in
E'. On the other hand, by (2), \((T^* f_n)(x_n) = f_n(T x_n) \to 0\), for every disjoint sequence \((x_n) \subseteq A^+\). Now by a particular case of [4], \(\sup_{x \in A} |T^* f_n(x)| \to 0\) and so \(\sup_{y \in T(A)} |f_n(y)| = \sup_{x \in A} |T^* f_n(x)| \to 0\). Then \(T(A)\) is an almost limited set.

For order bounded operators between two Banach lattices, we give a characterization of weak* almost Dunford-Pettis operators:

Theorem 3.3. Let \(T\) be an order bounded operator from a Banach lattice \(E\) into another \(F\) and \(E'\) has the weak* sequentially continuous lattice operations. Then the following assertions are equivalent:

1. \(T\) is a weak* almost Dunford-Pettis operator.

2. For all weakly null sequence \((x_n)\) in \(E\) consisting of pairwise disjoint terms, and for all weak* null sequence \((f_n)\) in \(F'\) consisting of pairwise disjoint terms it follows that \(f_n(T(x_n)) \to 0\).

Proof. (1 \(\to\) 2) Obvious.

(2 \(\to\) 1) Let \((x_n)\) be a weakly null sequence in \(E\), and let \((f_n)\) be a disjoint weak* null sequence in \(F'\). We have to prove that \(f_n(T(x_n)) \to 0\). Let \(A\) be the solid hull of the weak relatively compact subset \(\{x_n, n \in N\}\) of \(E\), by Theorem 4.34 of [1]. \((z_n) \to 0\) weak for each disjoint sequence \((z_n)\) in \(A^+\) and so, by our hypothesis, we have \(g_n(T(z_n)) \to 0\) for each disjoint weak* null sequence \((g_n)\) in \(F'\) and for each disjoint sequence \((z_n)\) in \(A^+\). Theorem 2.2, implies that \(T(A)\) is an almost limited set, and hence \(\sup_{y \in T(A)} |f_n(y)| \to 0\). So

\[|f_n(T(x_n))| \leq \sup_{x \in A} |f_n(T x)| \leq \sup_{y \in T(A)} |f_n(y)| \to 0 \]

holds and the proof is finished.

Now for order bounded operators between two Banach lattices, we give another characterizations of weak* almost Dunford-Pettis operators.

Theorem 3.4. Let \(T\) be a order bounded operator from a Banach lattice \(E\) into a \(\sigma\)-Dedekind complete Banach lattice \(F\). Then the following assertions are equivalent:

1. \(T\) is weak* almost Dunford-Pettis.

2. \(f_n(T(x_n)) \to 0\) for every weakly null sequence \((x_n)\) in \(E^+\) and for every disjoint weak* null sequence \((f_n)\) of \(F'\).

3. \(f_n(T(x_n)) \to 0\) for every disjoint weakly null sequence \((x_n)\) in \(E\) and for all disjoint weak* null sequence \((f_n)\) of \(F'\).

4. \(f_n(T(x_n)) \to 0\) for every disjoint weakly null sequence \((x_n)\) in \(E^+\) and for all disjoint weak* null sequence \((f_n)\) of \(F'\).

5. If \(A\) is a solid relatively weakly compact subset of \(E\), then \(TA\) is an almost limited set of \(F\).

6. \(f_n(T(x_n)) \to 0\) for every weakly null sequence \((x_n)\) in \(E^+\) and for all disjoint weak* null sequence \((f_n)\) of \((F')^+\).

7. \(f_n(T(x_n)) \to 0\) for every disjoint weakly null sequence \((x_n)\) in \(E^+\) and for all disjoint weak* null sequence \((f_n)\) of \((F')^+\).

Proof. (1 \(\to\) 2) and (1 \(\to\) 3) follows from Theorem 2.1.

(2 \(\to\) 4) and (3 \(\to\) 4) are obvious.

(4 \(\to\) 5) Let \(A\) be a solid relatively weakly compact subset of \(E\) and let \((f_n)\) be a disjoint weak* null sequence in \(F'\). If \((z_n)\) is a disjoint sequence in \((A)^+\) then by Theorem 4.34 of [2] \(z_n \to 0\). Thus, by our hypothesis \(f_n(T(z_n)) \to 0\) for every disjoint sequence \((z_n)\) in \(A\) and every disjoint weak* null sequence \((f_n)\) of \(F'\). Now, by Theorem 2.5 of [3], \(T\)
A) is almost limited.
(5 \to 1), (2 \to 6) and (4 \to 7) are obvious.
(6 \to 2) and (7 \to 4) Let \((x_n)\) in \(E^+\) be a weakly null (resp. disjoint weakly null) sequence and let \((f_n)\) of \(F'\) be a disjoint weak* null sequence. Since \(F\) is a \(\sigma\)-Dedekind complete Banach lattice then by Proposition 1.4 of [7] \(|f_n(x_n)|\) is weak* null. So the sequences \((f_n^+)\), \((f_n^-)\) are weak* null. Finally, by (6) (resp. (7)), \(f_n(T(x_n)) = (f_n^+)(T(x_n)) - (f_n^-)(T(x_n)) \to 0\).

Now we obtain the following characterization of the weak DP* property which is a generalization of Theorem 3.2 of [3].

Lemma 3.1. For a \(\sigma\)-Dedekind complete Banach lattice \(E\) the following assertions are equivalent:

1. \(E\) has the weak DP* property.
2. Solid hull of every relatively weakly is almost limited.
3. For all disjoint weakly null sequence \((x_n)\) in \(E^+\) and for all disjoint weak* null sequence \((f_n)\) of \((E')^+\) it follows that \(f_n(x_n) \to 0\).
4. For all weakly null sequence \((x_n)\) in \(E^+\) and for all disjoint weak* null sequence \((f_n)\) of \((E')^+\) it follows that \(f_n(x_n) \to 0\).
5. For all disjoint weakly null sequence \((x_n)\) in \(E^+\) and for all disjoint weak* null sequence \((f_n)\) of \(E^+\) it follows that \(f_n(x_n) \to 0\).
6. For all disjoint weakly null sequence \((x_n)\) in \(E^+\) and for all disjoint weak* null sequence \((f_n)\) of \(E^+\) it follows that \(f_n(x_n) \to 0\).
7. For all weakly null sequence \((x_n)\) in \(E^+\) and for all disjoint weak* null sequence \((f_n)\) of \(E^+\) it follows that \(f_n(x_n) \to 0\).

Proof. The proof is the same in Theorem 3.2 of [3].

The next result characterizes pairs of Banach lattices \(E\) and \(F\) for which every order bounded weak* almost Dunford-Pettis operator \(T : E \to F\) is almost limited.

Theorem 3.5. Let \(E\) and \(F\) be two Banach lattices such that \(F\) is \(\sigma\)-Dedekind complete. Then each order bounded weak* almost Dunford-Pettis operator from \(E\) into \(F\) is almost limited if one of the following assertions is valid.

1. \(F\) has the dual positive Schur property;
2. \(E^+\) has an order continuous norm.

Proof. (1). In this case, every operator \(T : E \to F\) is almost limited. In fact for all disjoint weak* null sequence \((f_n)\) of \(F'\), by Proposition 1.4 of [7] \(|f_n(x_n)|\) is weak* null and by the dual positive Schur property of \(F\), \(||f_n|| \to 0\) and hence \(||Tf_n|| \to 0\), as desired.

(2). As the norm of \(E^+\) is order continuous then by Theorem 2.4.14 of [1] every norm bounded disjoint sequence \((x_n)\) in \(E^+\) is weakly null. Now, since \(T\) is an order bounded weak* almost Dunford-Pettis operator then by Theorem 3.1 for all disjoint weak* null sequence \((f_n)\) of \(F'\), \(f_n(T(x_n)) \to 0\) and by theorem 3.2 the proof is completed.

Note that from Theorem 3.4, it is easy to see that if \(F\) is a \(\sigma\)-Dedekind complete Banach lattice then every order bounded almost Dunford-Pettis operator \(T : E \to F\) is weak* almost Dunford-Pettis. But the converse is false in general. In fact, the identity operator \(T : l^1 \to l^1\) is weak* almost Dunford-Pettis operator but it fail to be almost Dunford-Pettis. The following result characterizes pairs of Banach lattices \(E, F\) for which every order bounded weak* almost Dunford-Pettis operator operator \(T : E \to F\) is almost Dunford-Pettis.
Theorem 3.6. Let E and F be two Banach lattices such that F is σ-Dedekind complete. Then each order bounded weak* almost Dunford-Pettis operator from E into F is almost Dunford-Pettis if the following assertions are valid.

(1) E has the positive Schur property;
(2) The norm of F is order continuous.

Proof. (1) In this case, every operator $T : E \to F$ is almost Dunford-Pettis.

(2) Let $T : E \to F$ be an order bounded weak* almost Dunford-Pettis and let (x_n) be a positive disjoint weakly null sequence in E. Let $f \in (F')^+$. By Theorem 1.23 of [2], for each n there exists some $g_n \in [-f, f]$ with $f[Tx_n] = g_n(Tx_n)$. Since T^* is an order bounded operator, there is some $h \in E^+$, $T^*[f, f] \subseteq [-h, h]$. So $f[Tx_n] = (T^*g_n)(x_n) \leq h(x_n)$ for all n. Since (x_n) is a weakly null sequence then $h(x_n)$ and $f[Tx_n]$ are norm null. So $[Tx_n]$ is a weakly null sequence. Now let (f_n) be a disjoint norm bounded sequence in $(F')^+$ as the norm of F is order continuous, then by corollary 2.4.3 of [6] (f_n) is weak* null and by our hypothesis $f_n(T(x_n)) \to 0$ and so by corollary 2.6 of [4], $\|Tx_n\| \to 0$.

As consequence of Theorem 3.4 we obtain the domination property for weak* almost Dunford-Pettis operators.

Corollary 3.1. Let E and F be two Banach lattices and F is σ-Dedekind complete. If S and T are two positive operators from E into F such that $0 \leq S \leq T$. Then S is a weak* almost Dunford-Pettis operator whenever T is one.

Proof. Let (x_n) be a disjoint weakly null sequence in E^+, and let (f_n) be a disjoint weak* null sequence in $(F')^+$. By Theorem 3.4, we have to prove that $f_n(S(x_n)) \to 0$. Since T is weak* almost Dunford-Pettis, then $f_n(T(x_n)) \to 0$. Now, by using the inequalities $f_n(S(x_n)) \leq f_n(T(x_n))$ for each n, we see that $f_n(S(x_n)) \to 0$.

References

http://dx.doi.org/10.1016/j.jmaa.2013.10.085
http://dx.doi.org/10.1007/BF02760610
http://dx.doi.org/10.1007/s12215-013-0122-x
http://dx.doi.org/10.1007/s11117-012-0203-7