Common fixed point theorems in modular G-metric spaces

B. Azadifar¹, M. Maramaei¹, Gh. Sadeghi¹*

(1) Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran

Abstract
The purpose of this paper is to prove the existence of the unique common fixed point theorems of a pair of weakly compatible mappings satisfying Φ–maps in modular G–metric spaces.

Keywords: modular G-metric space, weakly compatible self-maps, contractive mappings satisfying Φ-maps; common fixed point.

1 Introduction and Preliminaries

The study of metric fixed point theory has been researched extensively in the past decades, since fixed point theory plays a major role in mathematics and applied sciences, such as optimization, mathematical models and economic theories.

There were many authors introduced the generalization of metric spaces such as 2–metric spaces [4] and D–metric spaces [3]. In [5] Mustafa and Sims found that most of the claim concerning the fundamental topological properties of D–metric spaces are incorrect. So, they introduced a generalization of metric spaces (G–metric spaces). The notion of a modular metric on an arbitrary set an the corresponding modular space, more general than a metric space were introduced and studied recently by Chistyakof [2]. Recently, the authors introduce the notion of modular G–metric spaces and obtain some fixed point theorems of contractive mappings defined on modular G–metric spaces [1]. In the sequel, we collect some basic facts and introduce some notations related to modular G–metric spaces. For further details and proofs, we refer the reader to [1].

Definition 1.1. Let X be a nonempty set, and let $G : X \times X \times X \rightarrow \mathbb{R}^+$ be a function satisfying:

(G1) $G(x, y, z) = 0$ if $x = y = z$,

(G2) $0 < G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,

(G3) $G(x, y, z) \leq G(x, y, z)$ for all $x, y, z \in X$ with $z \neq y$,

(G4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$ (symmetry in all three variables),

(G5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality),

then the function G is called a G-metric on X, and the pair (X, G) is a G-metric space.

Definition 1.2. Let X be a nonempty set, and let $\nu : (0, \infty) \times X \times X \times X \rightarrow [0, \infty]$ be a function satisfying:

(V1) $\nu(\lambda, y, z) = 0$ for all $x, y \in X$ and $\lambda > 0$ if $x = y = z$,

(V2) $\nu(\lambda, x, y) > 0$ for all $x, y \in X$ and $\lambda > 0$ with $x \neq y$,

*Corresponding author. Email address: ghadir54@gmail.com
then the function ν_λ is called a modular G-metric on X.

Example 1.1. The following indexed objects ν are simple examples of modulars on a set X. Let $\lambda > 0$ and $x, y, z \in X$, we have:
(a) $\nu_\lambda(x, y, z) = \infty$ if $x \neq y \neq z$, $\nu_\lambda(x, y, z) = 0$ if $x = y = z$; and if (X, G) is a (pseudo)metric space with (pseudo)metric G, then we also have:
(b) $\nu_\lambda(x, y, z) = \frac{G(x, y, z)}{\psi(A)}$, where $\psi : (0, \infty) \rightarrow (0, \infty)$ is a nondecreasing function;
(c) $\nu_\lambda(x, y, z) = \infty$ if $\lambda \leq G(x, y, z)$, and $\nu_\lambda(x, y, z) = 0$ if $\lambda > G(x, y, z)$;
(d) $\nu_\lambda(x, y, z) = \infty$ if $\lambda < G(x, y, z)$, and $\nu_\lambda(x, y, z) = 0$ if $\lambda \geq G(x, y, z)$.

Remark 1.1. Note that for $x, y, z \in X$ the function $0 < \lambda \mapsto \nu_\lambda(x, y, z) \in [0, \infty]$ is nonincreasing on $(0, \infty)$. Suppose $0 < \mu < \lambda$, then (V1) and (V5) imply
$$\nu_\lambda(x, y, z) \leq \nu_{\lambda-\mu}(x, x, x) + \nu_\mu(x, y, z) = \nu_\mu(x, y, z).$$

It follows that each point $\lambda > 0$ the right limit $\nu_{\lambda+0}(x, y, z) = \lim_{\mu \rightarrow \lambda+0}\nu_\mu(x, y, z)$ and left limit $\nu_{\lambda-0}(x, y, z) = \lim_{\mu \rightarrow \lambda-0}\nu_\mu(x, y, z)$ exist in $[0, \infty)$ and following two inequalities hold:
$$\nu_{\lambda+0}(x, y, z) \leq \nu_\lambda(x, y, z) \leq \nu_{\lambda-0}(x, y, z).$$

Proposition 1.1. Let (X, ν) be a modular G-metric space induced by metric modular ν, for any $x, y, z, a \in X$ it follows that:
(1) If $\nu_\lambda(x, y, z) = 0$ for all $\lambda > 0$, then $x = y = z$.
(2) $\nu_\lambda(x, y, z) \leq \nu_2(x, x, y) + \nu_2(x, x, z)$ for all $\lambda > 0$.
(3) $\nu_\lambda(x, y, z) \leq 2\nu_2(x, x, y)$ for all $\lambda > 0$.
(4) $\nu_\lambda(x, y, z) \leq \nu_2(x, a, z) + \nu_2(a, y, z)$ for all $\lambda > 0$.
(5) $\nu_\lambda(x, y, z) \leq \frac{2}{\lambda} \nu_2(x, y, a) + \nu_2(x, a, z) + \nu_2(a, y, z)$ for all $\lambda > 0$.
(6) $\nu_\lambda(x, y, z) \leq \left(\nu_2(x, a, a) + \nu_2(y, a, a) + \nu_2(z, a, a) \right)$ for all $\lambda > 0$.

Definition 1.3. Let (X, ν) be a modular G-metric space then for $x_0 \in X$ and $r > 0$, the ν-ball with center x_0 and radius $r > 0$ is
$$B_\nu(x_0, r) = \{ y \in X : \nu_\lambda(x_0, y, y) < r \text{ for all } \lambda > 0 \}.$$

Definition 1.4. Let (X, ν) be a modular G-metric space.
(i) The sequence $\{x_n\}_{n \in \mathbb{N}}$ in X is said to be ν-convergent if for all $\epsilon > 0$, there exist $x \in X$ and $n_0 \in \mathbb{N}$ such that $\nu_\lambda(x_n, x_n, x) < \epsilon$, for any $n, m \geq n_0$ and $\lambda > 0$.
(ii) The sequence $\{x_n\}_{n \in \mathbb{N}}$ in X is said to be ν-Cauchy if for all $\epsilon > 0$, there exist $n_0 \in \mathbb{N}$ such that $\nu_\lambda(x_n, x_m, x) < \epsilon$, for any $n, m, l \geq n_0$ and $\lambda > 0$.
(iii) X is said to be ν-complete if every ν-Cauchy in X is a ν-convergent sequence in X.

Proposition 1.2. Let (X, ν) be a modular G-metric space and $\{x_n\}_{n \in \mathbb{N}}$ be a sequence in X. Then the following are equivalent:
(1) $\{x_n\}_{n \in \mathbb{N}}$ is ν-convergent to x.
(2) $\nu_\lambda(x_n, x_n, x) \rightarrow 0$ as $n \rightarrow \infty$ for all $\lambda > 0$.
(3) $\nu_\lambda(x_n, x, x) \rightarrow 0$ as $n \rightarrow \infty$ for all $\lambda > 0$.
(4) $\nu_\lambda(x_m, x_n, x) \rightarrow 0$ as $m, n \rightarrow \infty$ for all $\lambda > 0$.
Proposition 1.3. [1] Let \((X, \nu)\) be a modular G-metric space and \(\{x_n\}_{n \in \mathbb{N}}\) be a sequence in \(X\). Then the following are equivalent:

1) \(\{x_n\}_{n \in \mathbb{N}}\) is \(\nu\)-Cauchy.

2) For every \(\epsilon > 0\), there exist \(n_\epsilon \in \mathbb{N}\) such that \(\nu_k(x_n, x_{n+m}, x_m) < \epsilon\) for any \(n, m \geq n_\epsilon\) and \(k > 0\).

Definition 1.5. Let \(g\) and \(h\) be single-valued self mappings on a set \(X\). If \(w = gx = hx\) for some \(x \in X\), then \(x\) is called a coincidence point of \(g\) and \(h\), and \(w\) is called a point of coincidence of \(g\) and \(h\).

Definition 1.6. A pair of maps \(g\) and \(h\) is called weakly compatible pair if they commute at coincidence point.

Proposition 1.4. Let \(g\) and \(h\) be weakly compatible self mappings on a set \(X\). If \(g\) and \(h\) have a unique point of coincidence \(w = gx = hx\), then \(w\) is the unique common fixed point of \(g\) and \(h\).

Proof. Since \(w = gx = hx\), \(g\) and \(h\) are weakly compatible, we have \(gw = ghx = hgx = hw\), i.e. \(gw = hw\) is a point of coincidence of \(g\) and \(h\). But \(w\) is the only point of coincidence of \(g\) and \(h\), so \(w = gw = hw\). Moreover if \(z = gz = hz\), then \(z\) is a point of coincidence of \(g\) and \(h\), and therefore \(z = w\) by uniqueness. Thus \(w\) is the unique common fixed point of \(g\) and \(h\).

2. Common fixed point theorems of a pair of weakly compatible mappings

Let \(\Phi\) be the set of all function \(\phi\) such that \(\phi : [0, +\infty) \rightarrow [0, +\infty)\) is a nondecreasing function satisfying \(\lim_{t \to +\infty} \phi(t) = 0\) for all \(t \in (0, +\infty)\). If \(\phi \in \Phi\), then \(\phi\) is called a \(\Phi\)-map, [6]. Moreover, if \(\phi\) is a \(\Phi\)-map then

i) \(\phi(t) < t\) for all \(t \in (0, +\infty)\);

ii) \(\phi(0) = 0\).

Throughout this paper, unless otherwise stated, we assume that \(\phi\) is a \(\Phi\)-map.

Theorem 2.1. Let \((X, \nu)\) be a modular G-metric space. Suppose that the mappings \(g, h : X_\nu \rightarrow X_\nu\) satisfy either

\[
v_k(gx, gy, gz) \leq \phi(\max\{v_k(hx, gx, gx), v_k(hy, gy, gy), v_k(hz, gz, gz)\}),
\]

or

\[
v_k(gx, gy, gz) \leq \phi(\max\{v_k(hx, hx, hx), v_k(hy, hy, hy), v_k(hz, hz, hz)\})
\]

for all \(x, y, z \in X_\nu\) and \(k > 0\). If the range of \(h\) contains the range of \(g\) and \(h(X_\nu)\) is complete subspace of \(X_\nu\), then \(g\) and \(h\) have a unique point of coincidence in \(X_\nu\). Moreover if \(g\) and \(h\) are weakly compatible, then \(g\) and \(h\) have a unique common fixed point.

Proof. Assume that \(g\) and \(h\) satisfy the condition (2.1). Let \(x_0\) be an arbitrary point in \(X_\nu\). Since the range of \(h\) contains the range of \(g\), there is \(x_1 \in X_\nu\) such that \(hx_1 = gx_0\). By continuing the process as before, we can construct a sequence \(\{hx_n\}\) such that \(hx_{n+1} = gx_n\) for all \(n \in \mathbb{N}\). If there is \(n \in \mathbb{N}\) such that \(hx_n = hx_{n+1}\), then \(g\) and \(h\) have a point of coincidence. Thus we can suppose that \(hx_n \neq hx_{n+1}\) for all \(n \in \mathbb{N}\). Therefore, for each \(n \in \mathbb{N}\), we obtain that

\[
v_k(hx_n, hx_{n+1}, hx_{n+1}) = v_k(gx_{n+1}, gx_{n+1}, gx_{n+1}) \leq \phi(\max\{v_k(hx_{n+1}, gx_{n+1}, gx_{n+1}), v_k(hx_n, gx_n, gx_n)\}) \leq \phi(\max\{v_k(hx_{n+1}, gx_{n+1}, gx_{n+1}), v_k(hx_n, gx_n, gx_n)\}) \leq \phi(\max\{v_k(hx_{n+1}, hx_n, hx_n), v_k(hx_n, hx_{n+1}, hx_{n+1})\}).
\]

If \(\max\{v_k(hx_{n+1}, hx_n, hx_n), v_k(hx_n, hx_{n+1}, hx_{n+1})\} = v_k(hx_n, hx_{n+1}, hx_{n+1}),\) then

\[
v_k(hx_n, hx_{n+1}, hx_{n+1}) \leq \phi(v_k(hx_n, hx_{n+1}, hx_{n+1})) < v_k(hx_n, hx_{n+1}, hx_{n+1}),
\]

which leads to a contradiction. This implies that

\[
v_k(hx_n, hx_{n+1}, hx_{n+1}) \leq \phi(v_k(hx_{n+1}, hx_n, hx_n)).
\]
That is, for each $n \in \mathbb{N}$, we have

$$\nu_\lambda(h_{x_n}, h_{x_{n+1}}, h_{x_{n+1}}) = \nu_\lambda(g_{x_{n-1}}, g_{x_n}, g_{x_n})$$

$$\leq \phi(\nu_\lambda(h_{x_{n-1}}, h_{x_n}, h_{x_n}))$$

$$\leq \phi^2(\nu_\lambda(h_{x_{n-2}}, h_{x_{n-1}}, h_{x_{n-1}}))$$

$$\vdots$$

$$\leq \phi^n(\nu_\lambda(h_{x_0}, h_{x_1}, h_{x_1}))$$

We will show that $\{h_{x_n}\}$ is G-Cauchy. Let $\varepsilon > 0$.

Since $\lim_{n \to \infty} \phi^n(\nu_\lambda(h_{x_0}, h_{x_1}, h_{x_1})) = 0$ and $\phi(\varepsilon) < \varepsilon$, there exists $n_\varepsilon \in \mathbb{N}$ such that

$$\phi^n(\nu_\lambda(h_{x_0}, h_{x_1}, h_{x_1})) < \varepsilon - \phi(\varepsilon) \quad \text{for all} \quad n \geq n_\varepsilon.$$

This implies that

$$\nu_\lambda(h_{x_n}, h_{x_{n+1}}, h_{x_{n+1}}) \quad \text{for all} \quad n \geq n_\varepsilon. \quad (2.3)$$

Let $m, n \in \mathbb{N}$ with $m > n$. We will prove that

$$\nu_\lambda(h_{x_n}, h_{x_m}, h_{x_m}) < \varepsilon \quad \text{for all} \quad m \geq n \geq n_\varepsilon. \quad (2.4)$$

by induction on m. Since $\varepsilon - \phi(\varepsilon) < \varepsilon$ and by (2.3), we obtain that (2.4) holds for $m = n + 1$. Suppose that (2.4) holds for $m = k$. Therefore, for $m = k + 1$, we have

$$\nu_\lambda(h_{x_n}, h_{x_{k+1}}, h_{x_{k+1}}) \leq \nu_\lambda(h_{x_n}, h_{x_{n+1}}, h_{x_{n+1}}) + \nu_\lambda(h_{x_{n+1}}, h_{x_{k+1}}, h_{x_{k+1}})$$

$$\leq \varepsilon - \phi(\varepsilon) + \nu_\lambda(g_{x_{n+1}}, g_{x_{n+1}}, g_{x_{k+1}})$$

$$\leq \varepsilon - \phi(\varepsilon) + \phi(\max\{\nu_\lambda(h_{x_n}, h_{x_{n+1}}, h_{x_{n+1}}), \nu_\lambda(h_{x_{k+1}}, h_{x_{k+1}}, h_{x_{k+1}})\})$$

$$\leq \varepsilon - \phi(\varepsilon) + \phi(\varepsilon) = \varepsilon.$$

Thus (2.4) holds for all $m \geq n \geq n_\varepsilon$. It follows that $\{h_{x_n}\}$ is ν-Cauchy. By the completeness of $h(X_\nu)$, we obtain that $\{h_{x_n}\}$ is ν-convergent to some $q \in h(X_\nu)$. So there exists $p \in X_\nu$ such that $hp = q$. We will show that $hp = gp$. Suppose that $hp \neq gp$. By (2.1) we have

$$\nu_\lambda(h_{x_n}, gp, gp) = \nu_\lambda(g_{x_{n-1}}, gp, gp)$$

$$\leq \phi(\max\{\nu_\lambda(h_{x_{n-1}}, h_{x_n}, h_{x_n}), \nu_\lambda(hp, gp, gp)\}).$$

Case 1.

$$\max\{\nu_\lambda(h_{x_{n-1}}, h_{x_n}, h_{x_n}), \nu_\lambda(hp, gp, gp)\} = \nu_\lambda(h_{x_{n-1}}, h_{x_n}, h_{x_n}),$$

we obtain that

$$\nu_\lambda(h_{x_n}, gp, gp) \leq \phi(\nu_\lambda(h_{x_{n-1}}, h_{x_n}, h_{x_n})) < \nu_\lambda(h_{x_{n-1}}, h_{x_n}, h_{x_n}).$$

By taking $n \to \infty$, we have $\nu_\lambda(hp, gp, gp) = 0$ and so $hp = gp$.

Case 2.

$$\max\{\nu_\lambda(h_{x_{n-1}}, h_{x_n}, h_{x_n}), \nu_\lambda(hp, gp, gp)\} = \nu_\lambda(hp, gp, gp),$$

we obtain that

$$\nu_\lambda(hp, gp, gp) \leq \phi(\nu_\lambda(hp, gp, gp)).$$

By taking $n \to \infty$, we have

$$\nu_\lambda(hp, gp, gp) \leq \phi(\nu_\lambda(hp, gp, gp)) < \nu_\lambda(hp, gp, gp).$$
which leads to a contradiction. Therefore \(hp = gp \). We now show that \(g \) and \(h \) have a unique point of coincidence. Suppose that \(hq = gq \) for some \(q \in X_v \). By applying (2.1), it follows that

\[
\nu_\lambda(hp, hp, hq) = \nu_\lambda(gp, gp, gq) \\
\leq \phi(\max\{ \nu_\lambda(hp, gp, gp), \nu_\lambda(hp, gp, gp), \nu_\lambda(hq, gq, gq) \}) \\
= 0.
\]

Therefore \(hp = hq \). This implies that \(g \) and \(h \) have a unique point of coincidence. By proposition 1.4, we can conclude that \(g \) and \(h \) have a unique common fixed point. The proof using (2.2) is similar.

Corollary 2.1. Let \((X, \nu)\) be a modular G-metric space. Suppose that the mapping \(g, h : X_v \rightarrow X_v \) satisfy either

\[
\nu_\lambda(gx, gy, gz) \leq k(\max\{ \nu_\lambda(hx, gx, gx), \nu_\lambda(hy, gy, gy), \nu_\lambda(hz, gz, gz) \})
\]

or

\[
\nu_\lambda(gx, gy, gz) \leq k(\max\{ \nu_\lambda(hx, hx, gx), \nu_\lambda(hy, hy, gy), \nu_\lambda(hz, hz, gz) \})
\]

for all \(x, y, z \in X_v \) where \(0 \leq k \leq 1 \). If the range of \(h \) contains the range of \(g \) and \(h(X_v) \) is a complete subspace of \(X_v \), then \(g \) and \(h \) have a unique point of coincidence in \(X_v \). Moreover if \(g \) and \(h \) are weakly compatible, then \(g \) and \(h \) have a unique common fixed point.

Proof. Define \(\phi : [0, \infty) \rightarrow [0, \infty) \) by \(\phi(t) = kt \). Therefore \(\phi \) is a nondecreasing function and \(\lim_{t \rightarrow \infty} \phi^p(t) = 0 \) for all \(t \in [0, \infty) \). It follows that the contractive conditions in Theorem 2.1 are now satisfied. This completes the proof.

Example 2.1. Let \(X = [0, 2] \), \(\nu_\lambda(x, y, z) = \max\{|x - y|, |y - z|, |x - z|\} \) and \(\phi(t) = \frac{t}{2} \). Therefore \(\phi \) is a \(\phi \)-map. Define \(g, h : X \rightarrow X \) by

\[
gx = 1 \quad \text{and} \quad hx = 2 - x
\]

We obtain that \(g \) and \(h \) satisfy (2.1) and (2.2) in Theorem 2.1. Indeed, we have

\[
\nu_\lambda(gx, gy, gz) = 0,
\]

\[
\phi(\max\{ \nu_\lambda(hx, gx, gx), \nu_\lambda(hy, gy, gy), \nu_\lambda(hz, gz, gz) \}) = \frac{1}{2}(\max\{|1 - x|, |1 - y|, |1 - z|},
\]

and

\[
\phi(\max\{ \nu_\lambda(hx, hx, gx), \nu_\lambda(hy, hy, gy), \nu_\lambda(hz, hz, gz) \}) = \frac{1}{2}(\max\{|1 - x|, |1 - y|, |1 - z|}.
\]

It is obvious that the range of \(h \) and \(h(X) \) is a complete subspace of \((X, \nu)\). Furthermore, \(g \) and \(h \) are weakly compatible. Thus all assumptions in Theorem 2.1 are satisfied. This implies that \(g \) and \(h \) have a unique common fixed point which is \(x = 1 \).

Theorem 2.2. Let \((X, \nu)\) be a modular G-metric space. Suppose that the mapping \(g, h : X_v \rightarrow X_v \) satisfy

\[
\nu_\lambda(gx, gy, gz) \leq \phi(\nu_\lambda(hx, hy, hz)),
\]

for all \(x, y, z \in X_v \) and \(\lambda > 0 \). If \(g(X_v) \subseteq h(X_v) \) and \(h(X_v) \) is a complete subspace of \(X_v \), then \(g \) and \(h \) have a unique point of coincidence in \(X_v \). Moreover if \(g \) and \(h \) are weakly compatible, then \(g \) and \(h \) have a unique common fixed point.

Proof. Let \(x_0 \) be an arbitrary point in \(X_v \). Since \(g(X_v) \subseteq h(X_v) \) there is \(x_1 \in X_v \) such that \(hx_1 = gx_0 \). By continuing the process as before, we can construct a sequence \(\{hx_n\}_{n \in \mathbb{N}} \) such that \(hx_{n+1} = gx_n \) for all \(n \in \mathbb{N} \). If there is \(n \in \mathbb{N} \) such
that $h_{x_{n+1}} = h_{x_n}$, then g and h have a a point of coincidence. Thus we can suppose that $h_{x_{n+1}} \neq h_{x_n}$ for all $n \in \mathbb{N}$. Therefore for each $n \in \mathbb{N}$, we obtain that

$$v_\lambda(h_{x_n}, h_{x_{n+1}}, h_{x_{n+1}}) = v_\lambda(g_{x_{n-1}}, g_{x_n}, g_{x_n}) \leq \phi(v_\lambda(h_{x_{n-1}}, h_{x_n}, h_{x_n})) \leq \phi^2(v_\lambda(h_{x_{n-2}}, h_{x_{n-1}}, h_{x_{n-1}})) \leq \cdots \leq \phi^n(v_\lambda(h_{x_0}, h_{x_1}, h_{x_1})),$$

for all $\lambda > 0$. We will show that $\{h_{x_n}\}_{n \in \mathbb{N}}$ is ν-Cauchy. Let $\epsilon > 0$. Since $\lim_{n \to \infty} \phi^n(v_\lambda(h_{x_0}, h_{x_1}, h_{x_1})) = 0$ and $\phi(\epsilon) < \epsilon$, there exists $n_\epsilon \in \mathbb{N}$, such that

$$\phi^n(v_\lambda(h_{x_0}, h_{x_1}, h_{x_1})) < \epsilon - \phi(\epsilon) \quad \text{for all} \quad n \geq n_\epsilon.$$

for all $\lambda > 0$. This implies that

$$v_\lambda(h_{x_n}, h_{x_{n+1}}, h_{x_{n+1}}) < \epsilon - \phi(\epsilon) \quad \text{for all} \quad n \geq n_\epsilon, \quad (2.6)$$

for all $\lambda > 0$. Let $m, n \in \mathbb{N}$ with $m > n$. Then

$$v_\lambda(h_{x_n}, h_{x_m}, h_{x_m}) < \epsilon \quad \text{for all} \quad m \geq n \geq n_\epsilon, \quad (2.7)$$

by induction on m and for all $\lambda > 0$. Since $\epsilon - \phi(\epsilon) < \epsilon$ and by inequality (2.6), we obtain that (2.7) holds for $m = n + 1$. Suppose that (2.7) holds for $m = k$. Therefore for $m = k + 1$ we have

$$v_\lambda(h_{x_n}, h_{x_{k+1}}, h_{x_{k+1}}) \leq v_\lambda(h_{x_n}, h_{x_{n+1}}, h_{x_{n+1}}) + v_\lambda(h_{x_{n+1}}, h_{x_{k+1}}, h_{x_{k+1}}) \leq \epsilon - \phi(\epsilon) + v_\lambda(g_{x_k}, g_{x_k}, g_{x_k}) \leq \epsilon - \phi(\epsilon) + \phi(v_\lambda(h_{x_n}, h_{x_k}, h_{x_k})) \leq \epsilon - \phi(\epsilon) + \phi(\epsilon) = \epsilon,$$

for all $\lambda > 0$. Thus (2.7) holds for all $m \geq n \geq n_\epsilon$ and $\lambda > 0$. It follows that $\{h_{x_n}\}_{n \in \mathbb{N}}$ is ν-Cauchy. By the completeness of $h(X_\nu)$, we obtain that $\{h_{x_n}\}_{n \in \mathbb{N}}$ is ν-convergent to some $q \in h(X_\nu)$. So there exists $p \in X_\nu$ such that $hp = q$. We will show that $hp = gq$. By (2.5), we obtain

$$v_\lambda(hp, hp, gp) \leq v_\lambda(hp, hp, h_{x_{n+1}}) + v_\lambda(h_{x_{n+1}}, h_{x_{n+1}}, gp) \leq v_\lambda(hp, hp, h_{x_{n+1}}) + \phi(v_\lambda(h_{x_n}, h_{x_n}, hp)) \leq v_\lambda(hp, hp, h_{x_{n+1}}) + v_\lambda(h_{x_n}, h_{x_n}, hp),$$

for all $\lambda > 0$. By taking $n \to \infty$, we have $v_\lambda(hp, hp, gp) = 0$ and so $gq = hq$. We now show that g and h have a a point of coincidence. Suppose that $gq = hq$ for some $q \in X_\nu$. Assume that $hp \neq hq$. By applying (2.5), it follows that

$$v_\lambda(hp, hp, hq) = v_\lambda(gp, gp, gq) \leq \phi(v_\lambda(hp, hp, gq)) \leq v_\lambda(hp, hp, gq),$$

for all $\lambda > 0$. Which leads to a contraction. Therefore $hp = hq$. This implies that g and h have a unique point of coincidence. By Proposition 1.4, we can conclude that g and h have a unique common fixed point.

By setting h to be the identity function on X_ν, we immediately have the following corollary.
Corollary 2.2. Let X be a ν-complete modular G-metric space. Suppose that the mapping $g : X \to X$ satisfy

$$\nu_\lambda(gx, gy, gz) \leq \phi(\nu_\lambda(x, y, z)),$$

for all $x, y, z \in X$ and $\lambda > 0$. Then g has a unique fixed point.

Theorem 2.3. Let (X, ν) be a modular G-metric space. Suppose that the mapping $g, h : X \to X$ satisfy

$$\nu_\lambda(gx, gy, gz) \leq \phi(\nu_\lambda(hx, hy, hz)), \tag{2.8}$$

for all $x, y, z \in X$ and $\lambda > 0$. If $g(X) \subset h(X)$ and $h(X)$ is a complete subspace of X, then g and h have a unique point of coincidence in X. Moreover if g and h are weakly compatible, then g and h have a unique common fixed point.

Proof. Let x_0 be an arbitrary point in X. Since $g(X) \subset h(X)$ there is $x_1 \in X$ such that $hx_1 = gx_0$. By continuing the process as before, we can construct a sequence $\{hx_n\}_{n \in \mathbb{N}}$ such that $hx_{n+1} = gx_n$ for all $n \in \mathbb{N}$. If there is $n \in \mathbb{N}$ such that $hx_n = x$, then g and h have a a point of coincidence. Thus we can suppose that $hx_{n+1} \neq hx_n$ for all $n \in \mathbb{N}$. Therefore for each $n \in \mathbb{N}$, we obtain that

$$\nu_\lambda(hx_n, hx_{n+1}, hx_{n+1}) = \nu_\lambda(gx_{n-1}, gx_n, gx_n) \leq \phi(\max\{\nu_\lambda(hx_{n-1}, gx_n, gx_n), \nu(hx_{n-1}, hx_n, hx_n)\}, \nu_\lambda(hx_n, hx_n, gx_n), \nu_\lambda(gx_{n-1}, hx_n, hx_n)) \leq \phi(\max\{\nu_\lambda(hx_n, hx_n, hx_n), \nu_\lambda(hx_n, hx_n, hx_n)\}),$$

for all $\lambda > 0$. If $\max\{\nu_\lambda(hx_{n-1}, hx_n, hx_n), \nu_\lambda(hx_{n-1}, hx_n, hx_n)\} = \nu_\lambda(hx_n, hx_{n+1}, hx_{n+1})$, for all $\lambda > 0$ then $\nu_\lambda(hx_n, hx_{n+1}, hx_{n+1}) \leq \phi(\nu_\lambda(hx_n, hx_{n+1}, hx_{n+1})) < \nu_\lambda(hx_n, hx_{n+1}, hx_{n+1})$, for all $\lambda > 0$ which is a contradiction. This implies that

$$\nu_\lambda(hx_n, hx_{n+1}, hx_{n+1}) \leq \phi(\nu_\lambda(hx_{n}, hx_{n}, hx_{n})), \quad (\lambda > 0).$$

That is for each $n \in \mathbb{N}$, we have

$$\nu_\lambda(hx_n, hx_{n+1}, hx_{n+1}) = \nu_\lambda(gx_{n-1}, gx_n, gx_n) \leq \phi(\nu_\lambda(hx_{n-1}, hx_n, hx_n)) \leq \phi^2(\nu_\lambda(hx_{n-2}, hx_{n-1}, hx_{n-1})) \leq \cdots \leq \phi^n(\nu_\lambda(hx_0, hx_1, hx_1)),$$

for all $\lambda > 0$. We will show that $\{hx_n\}_{n \in \mathbb{N}}$ is ν-Cauchy. Let $\varepsilon > 0$. Since $\lim_{n \to \infty} \phi^n(\nu_\lambda(hx_0, hx_1, hx_1)) = 0$ and $\phi(\varepsilon) < \varepsilon$, there exists $n_\varepsilon \in \mathbb{N}$, such that

$$\phi^n(\nu_\lambda(hx_0, hx_1, hx_1)) < \varepsilon - \phi(\varepsilon) \quad for \ all \ n \geq n_\varepsilon.$$

for all $\lambda > 0$. This implies that

$$\nu_\lambda(hx_0, hx_1, hx_1) < \varepsilon - \phi(\varepsilon) \quad for \ all \ n \geq n_\varepsilon, \tag{2.9}$$

for all $\lambda > 0$. Let $m, n \in \mathbb{N}$ with $m > n$.

$$\nu_\lambda(hx_n, hx_m, hx_m) < \varepsilon \quad for \ all \ m \geq n \geq n_\varepsilon, \tag{2.10}$$
by induction on m and for all $\lambda > 0$. Since $\varepsilon - \phi(\varepsilon) < \varepsilon$ and by inequality (2.9), we obtain that (2.10) holds for $m = n + 1$. Suppose that (2.10) holds for $m = k$. Therefore for $m = k + 1$ we have

$$v_{\lambda}(hx_n, hx_{k+1}, hx_{k+1}) \leq v_{\lambda}(hx_n, hx_{n+1}, hx_{n+1}) + v_{\lambda}(hx_{n+1}, hx_{k+1}, hx_{k+1})$$

$$\leq \varepsilon - \phi(\varepsilon) + v_{\lambda}(g_{x_n}, g_{x_k}, g_{x_k})$$

$$\leq \varepsilon - \phi(\varepsilon) + \phi(\max\{v_{\lambda}(hx_n, hx_n, hx_n), v_{\lambda}(hx_{n+1}, hx_{n+1}, hx_{n+1})\})$$

$$\leq \varepsilon - \phi(\varepsilon) + \phi(\max\{v_{\lambda}(hx_n, hx_n, hx_n), v_{\lambda}(hx_{n+1}, hx_{n+1}, hx_{n+1})\})$$

for all $\lambda > 0$. Thus (2.10) holds for all $m \geq n \geq n_e$ and $\lambda > 0$. It follows that $\{hx_n\}_{n \in \mathbb{N}}$ is v-Cauchy. By the completeness of $h(X_n)$, we obtain that $\{hx_n\}_{n \in \mathbb{N}}$ is v-convergent to some $q \in h(X_n)$. So there exists $p \in X_n$ such that $hp = q$. We will show that $hp = gp$. By (2.11), we obtain

$$v_{\lambda}(hp, hp, gp) \leq v_{\lambda}(hp, hp, hx_n) + v_{\lambda}(hx_n, hx_n, gp)$$

$$\leq v_{\lambda}(hp, hp, hx_n) + v_{\lambda}(g_{x_n-1}, g_{x_n-1}, gp)$$

$$\leq v_{\lambda}(hp, hp, hx_n) + \phi(\max\{v_{\lambda}(hx_{n-1}, hx_{n-1}, hp), v_{\lambda}(hx_{n-1}, g_{x_n-1}, g_{x_n-1})\})$$

$$\leq v_{\lambda}(hp, hp, hx_n) + \phi(\max\{v_{\lambda}(hx_{n-1}, hx_{n-1}, hp), v_{\lambda}(hx_{n-1}, hx_{n-1}, hp)\})$$

for all $\lambda > 0$.

Case 1. If

$$\max\{v_{\lambda}(hx_{n-1}, hx_{n-1}, hp), v_{\lambda}(hx_{n-1}, hx_{n-1}, hx_n), v_{\lambda}(hx_{n-1}, hx_{n-1}, hp)\}$$

$$= v_{\lambda}(hx_{n-1}, hx_{n-1}, hp),$$

for all $\lambda > 0$. We obtain that

$$v_{\lambda}(hp, hp, gp) < v_{\lambda}(hp, hp, hx_n) + v_{\lambda}(hx_{n-1}, hx_{n-1}, hp),$$

for all $\lambda > 0$. By taking $n \rightarrow \infty$, we have $v_{\lambda}(hp, gp, gp) = 0$, for all $\lambda > 0$. Whence $hp = gp$.

Case 2. If

$$\max\{v_{\lambda}(hx_{n-1}, hx_{n-1}, hp), v_{\lambda}(hx_{n-1}, hx_{n-1}, hx_n), v_{\lambda}(hx_{n-1}, hx_{n-1}, hp)\}$$

$$= v_{\lambda}(hx_{n-1}, hx_{n-1}, hp),$$

for all $\lambda > 0$. We obtain that

$$v_{\lambda}(hp, hp, gp) < v_{\lambda}(hp, hp, hx_n) + v_{\lambda}(hx_{n-1}, hx_{n-1}, hx_n),$$

for all $\lambda > 0$. By taking $n \rightarrow \infty$, we have $v_{\lambda}(hp, gp, gp) = 0$, for all $\lambda > 0$. Whence $hp = gp$.

Case 3. If

$$\max\{v_{\lambda}(hx_{n-1}, hx_{n-1}, hp), v_{\lambda}(hx_{n-1}, hx_{n-1}, hx_n), v_{\lambda}(hx_{n-1}, hx_{n-1}, hp)\}$$

$$= v_{\lambda}(hx_{n-1}, hx_{n-1}, hp),$$

for all $\lambda > 0$. We obtain that

$$v_{\lambda}(hp, hp, gp) < v_{\lambda}(hp, hp, hx_n) + v_{\lambda}(hx_{n-1}, hx_{n-1}, hx_n),$$

for all $\lambda > 0$. By taking $n \rightarrow \infty$, we have $v_{\lambda}(hp, gp, gp) = 0$, for all $\lambda > 0$. Whence $hp = gp$.
for all $\lambda > 0$. We obtain that
\[\nu_{\lambda}(hp, gp, gp) < \nu_{\lambda}(hp, hp, hx_{n}) + \nu_{\lambda}(hx_{n}, hx_{n-1}, hp), \]
for all $\lambda > 0$. By taking $n \to \infty$, we have $\nu_{\lambda}(hp, gp, gp) = 0$, for all $\lambda > 0$. Whence $hp = gp$. We show that g and h have a unique point of coincidence. Suppose that $gq = hq$ for some $q \in X_{\nu}$. Assume that $hp \neqhq$. By applying (2.11), it follows that
\[\nu_{\lambda}(hp, hp,hq) = \phi(\max\{\nu_{\lambda}(hp, hp, gp), \nu_{\lambda}(hp, gp, gp), \nu_{\lambda}(gp, gp, gp)\}) \]
for all $\lambda > 0$, which leads to a contradiction. Therefore $hp =hq$. This implies that g and h have a unique point of coincidence. By Proposition 1.4, we can conclude that g and h have a unique common fixed point. \hfill \Box

Consequently, if we suppose that h is the identity function on X_{ν}, then we obtain the following corollary.

Corollary 2.3. Let X_{ν} be a ν-complete modular G-metric space. Suppose that the mapping $g : X_{\nu} \to X_{\nu}$ satisfies
\[\nu_{\lambda}(gx, gy, gz) \leq \phi(\max\{\nu_{\lambda}(x, y, z), \nu_{\lambda}(x, gx, gx), \nu_{\lambda}(y, gy, gy), \nu_{\lambda}(gx, y, z)\}), \] (2.11)
for all $x, y, z \in X_{\nu}$ and $\lambda > 0$. Then g has a unique fixed point.

References

