Common Fixed Point Theorems in Non-archimedean Fuzzy Metric Spaces

Naval Singh 1, Reena Jain 2∗; Hariom Dubey 3

(1) Govt. Science and Commerce College, Benazir, Bhopal (M.P.), India.
(2) Technocrats institute of technology, Bhopal (M.P.), India.
(3) Technocrats institute of technology, Bhopal (M.P.), India.

Copyright 2011 © Naval Singh, Reena Jain and Hariom Dubey. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
The aim of this paper is to define the concept of weakly comparable multi-valued mappings. Also we obtain some common fixed point theorems for pairs of weakly comparable multi-valued mappings in ordered non-Archimedean fuzzy metric space.

Keywords: Partial order; Non-Archimedean fuzzy metric space; Weakly comparable mappings.

1 Introduction

In 1965, Zadeh [17] introduced the notion of fuzzy sets. Then some definitions of the fuzzy metric spaces are given by some authors [6, 10, 11], since then fixed point theory on these spaces has been developing (see e.g.[3, 4, 5, 7, 8, 9]). Generally this theory on fuzzy metric space is done for contractive or contractive type mappings. (See [10, 12, 13, 14, 15]).

In 2010, Altun [1] introduced a partial order on a non-Archimedean fuzzy metric space under the Lukasiewicz t-norm and proved some fixed point theorems for single and multi-valued mappings. In [2], Altun and Miheţ introduced the concept of fuzzy order ψ-contractive mappings and proved two fixed point theorems on ordered non-Archimedean fuzzy metric spaces for ψ-contractive type mappings. In the same paper they have given the concept of weakly comparable mappings and proved a common fixed point theorem for such mappings with a partial order induced by an appropriate function.

In this paper, we introduce the concept of weakly comparable multi-valued mappings and prove some common fixed point theorems using this concept with a partial order induced by a function on non-Archimedean fuzzy metric spaces.

∗Corresponding author. Email address: reenakhatod@gmail.com Tel:091-750933985
2 Preliminaries

Definition 2.1. [16], A binary operation $*: [0,1] \times [0,1] \rightarrow [0,1]$ is called a continuous t-norms if $([0,1], *)$ is an abelian topological monoid with the unit 1 such that $a \ast b \leq c \ast d$ whenever $a \leq c$ and $b \leq d$ and $a,b,c,d \in [0,1]$.

Definition 2.2. [11], A triplet $(X,M,*)$ is said to be a fuzzy metric space if X is an arbitrary set, $*$ is a continuous t-norm and M is a fuzzy set on $X^2 \times [0,\infty)$ satisfying the following:

(KM-1) $M(x,y,0) = 0$ for all $x, y \in X$,

(KM-2) $M(x,y,t) = 1$ for all $t > 0$ if and only if $x = y$,

(KM-3) $M(x,y,t) = M(y,x,t)$ for all $x, y \in X$ and $t > 0$,

(KM-4) $M(x,y,\bullet) : [0,\infty) \rightarrow [0,1]$ is left continuous for all $x, y \in X$,

(KM-5) $M(x,y,t) \ast M(y,z,s) \leq M(x,z,t+s)$ for all $x, y, z \in X$ and $s,t > 0$,

Note that $M(x,y,t)$ can be thought of as the degree of nearness between x and y with respect to t. We will refer to such spaces as FM-spaces.

If in the above definition, the triangular inequality (KM-5) is replaced by

(NA) $M(x,y,t) \ast M(y,z,s) \leq M(x,z,\max \{t,s\})$ for all $x, y, z \in X$ and $s,t > 0$.

then the triplet $(X,M,*)$ is called a non-Archimedean fuzzy metric space. It is easy to note that the triangular inequality (NA) implies (KM-5) that is every non-Archimedean fuzzy metric space is itself a fuzzy metric space.

Definition 2.3. [3, 16], Let $(X,M,*)$ be a fuzzy metric space. A sequence $\{x_n\}$ in X is called an M- Cauchy sequence, if for each $\epsilon \in (0,1)$ and $t > 0$ there exist $n_0 \in N$ such that $M(x_n,x_m,t) > 1 - \epsilon$ for all $m,n \geq n_0$. A sequence $\{x_n\}$ in a fuzzy metric space $(X,M,*)$ is said to be convergent if there exist $x \in X$ such that $\lim_{n \rightarrow \infty} M(x_n,x,t) = 1$ for all $t > 0$. An FM space $(X,M,*)$ is called M- Complete if every M- Cauchy sequence is convergent.

Lemma 2.1. [1], Let $(X,M,*)$ be a non-Archimedean fuzzy metric space with $a \ast b \geq \max \{a+b-1,0\}$ and $\varphi : X \times [0,\infty) \rightarrow R$. Define the relation \preceq on X as follows: $x \preceq y \iff M(x,y,t) \geq 1 + \varphi(x,t) - \varphi(y,t)$ for all $t > 0$. Then \preceq is an (partial) order on X called the partial order induced by φ.

Lemma 2.2. [2], Let $(X,M,*)$ be a non-Archimedean fuzzy metric space with $a \ast b \geq \max \{a+b-1,0\}$ and $\varphi : X \times [0,\infty) \rightarrow R$. Define the relation \succeq on X as follows: $x \succeq y \iff \varphi(x,t) - \varphi(y,t) \geq \nu \{(1-M(x,y,t))\}$ for all $t > 0$. Then \succeq is an (partial) order on X.

Definition 2.4. [5], Let A and B be two nonempty subsets of X and \preceq be a partial order on X. Then it is said that $A \preceq B$, if for every $a \in A$, there exists $b \in B$ such that $a \preceq b$.

Definition 2.5. [5], If \(\{x_n\} \subset X \) satisfies \(x_1 \leq x_2 \leq x_3 \ldots \leq x_n \ldots \ or \ x_1 \geq x_2 \geq x_3 \ldots \geq x_n \ldots \) then \(\{x_n\} \) is called a monotone sequence.

Definition 2.6. [5], A multi-valued operator \(T : X \to 2^X \) is called order closed if, for monotone sequences \(\{u_n\} \) and \(\{v_n\} \) in \(X \), \(u_n \to u_0 \), \(v_n \to v_0 \) and \(v_n \in Tu_n \) imply \(v_0 \in Tu_0 \).

Altun and Mihet [2] give the concept of weakly comparable mappings on an ordered space as follows:

Definition 2.7. [5], Let \((X, \preceq) \) be an ordered space. Two mappings \(f,g : X \to X \) are said to be weakly comparable if \(fx \preceq gx \) and \(gx \preceq fx \) for all \(x \in X \).

3 Main Results

We first define the concept of weakly comparable multi-valued mappings on an ordered space as follows:

Definition 3.1. Let \((X, \preceq) \) be an ordered space. Two mappings \(F,G : X \to 2^X \) are said to be weakly comparable if \(Fx \preceq Gy \) for all \(x \in X \), \(y \in Fx \) and \(Gy \preceq Fy \) for all \(x \in X \), \(y \in Gx \).

Example 3.1. Let \(X = [0, \infty) \) and \(\leq \) be the usual ordering. Let \(F,G : X \to 2^X \) defined by

\[
F(x) = \begin{cases}
\{x\} & \text{if } x \in [0, 1] \\
\{0\} & \text{if } x \in (1, \infty)
\end{cases}
\] (3.1)

\[
G(x) = \begin{cases}
\{\sqrt{x}\} & \text{if } x \in [0, 1] \\
\{0\} & \text{if } x \in (1, \infty)
\end{cases}
\] (3.2)

Then it is obvious that \(Fx \preceq Gy \) for all \(x \in X, y \in Fx \) and \(Gy \preceq Fy \) for all \(x \in X, y \in Gx \). Thus \(F \) and \(G \) are weakly comparable.

Now we prove our main theorem based on the concept of weakly comparable mappings.

Theorem 3.1. Let \((X, M, \ast) \) be an \(M \)-complete Non-Archimedean fuzzy metric space with \(a \ast b \geq \max \{a + b - 1, 0\} \) and \(\varphi : X \times [0, \infty) \to R \) be bounded from above function and \(^{\prime}_{\sim}\) a partial order induced by \(\varphi \). Suppose \(F,G : X \to 2^X \) are two order closed operators and two weakly comparable mappings then \(F \) and \(G \) have a common fixed point.

Proof. Since \(Fx \) is non-empty for all \(x \in X \), there exists \(x_1 \in Fx_0 \) and since \(F \) and \(G \) are weakly comparable, we have \(Fx_0 \preceq Gx_1 \). And so by the definition of \(\preceq \) there exist \(x_2 \in Gx_1 \) such that \(x_1 \preceq x_2 \). Again since \(x_2 \in Gx_1 \), by weak comparability of \(F \) and \(G \) we have \(Gx_1 \preceq Fx_2 \). And so there exist \(x_3 \in Fx_2 \) such that \(x_2 \preceq x_3 \). Continuing in this way we get a sequence \(\{x_n\} \) which satisfies \(x_{2n+1} \in Fx_{2n} \) and \(x_{2n} \in Gx_{2n-1} \) such that

\[
x_1 \preceq x_2 \preceq x_3 \ldots x_n \preceq x_{n+1} \ldots
\] (3.3)

That is, the sequence \(\{x_n\} \) is nondecreasing . By definition of " \(\preceq \) " , we have

\[
\varphi(x_0, t) \leq \varphi(x_1, t) \leq \varphi(x_2, t) \leq \ldots
\] (3.4)
for all $t > 0$. In other words, the sequence $\{\varphi(x_n, t)\}$ is nondecreasing sequence of real numbers for all $t > 0$. Since φ is bounded from above, $\{\varphi(x_n, t)\}$ is convergent and hence Cauchy. So, for all $\epsilon > 0$ there exist $n_0 \in N$ such that for all $m > n > n_0$ and $t > 0$. We have $|\varphi(x_m, t) - \varphi(x_n, t)| = \varphi(x_m, t) - \varphi(x_n, t) < \epsilon$.

Therefore, since $x_n \leq x_m$,

$$M(x_n, x_m, t) \geq 1 + \varphi(x_n, t) - \varphi(x_m, t) = 1 - |\varphi(x_m, t) - \varphi(x_n, t)| > 1 - \epsilon$$

This shows that the sequence $\{x_n\}$ is Cauchy in X and since X is M-complete, it converges to a point $z \in X$. Since the sequences $\{x_{2n}\}$ and $\{x_{2n+1}\}$ are subsequences of $\{x_n\}$ therefore $x_{2n} \rightarrow z$ and $x_{2n+1} \rightarrow z$ with $x_{2n+1} \in Fx_{2n}$ and $x_{2n} \in Gx_{2n-1}$. Now since F and G are order closed, we have $z \in Fz$ and $z \in Gz$ i.e. $z \in Fz \cap Gz$. Hence z is a common fixed point of F and G.

We give an example to illustrate the above theorem:

Example 3.2. Let $X = N = \{1, 2, 3, \ldots\}$, $a * b = ab$ and

$$M(x, y, t) = \begin{cases} \frac{x}{y} & \text{if } x \leq y \\ \frac{y}{x} & \text{if } y \leq x \end{cases} \quad (3.5)$$

for all $t > 0$. Then $(X, M*)$ is an M-complete non-Archimedean fuzzy metric space. Let $\varphi : X \times [0, \infty) \rightarrow R$ be defined as $\varphi(x, t) = 1 - \frac{3}{t}$. Define $A = \{1, 2, 3, 4, 5\}$ and $B = \{6, 7, \ldots\}$. Now if $x, y \in A$ and $x \leq y$, then $x \leq y$. If $x \in A$ and $y \in B$ then $x \leq y$. If $x, y \in B$, then x and y are not comparable. Now define $F, G : X \rightarrow 2^X$ as $Fx = \{6, x + 1\}$ and $Gx = \{6, x + 2\}$

It is clear that F and G are order closed and weakly comparable. And so all the conditions of Theorem (3.1) are satisfied. Therefore 6 is a common fixed point of F and G.

Theorem 3.2. Let $(X, M, *)$ be an M-complete non-Archimedean fuzzy metric space with $a * b \geq \max\{a + b - 1, 0\}$ and $\varphi : X \times [0, \infty) \rightarrow R$ a bounded from above function and "\leq" a partial order induced by φ. Suppose $F, G, H : X \rightarrow 2^X$ are three order closed operators such that the pairs $\{F, G\}$ and $\{H, G\}$ are weakly comparable mappings then F, G and H have a common fixed point.

Proof. We construct a sequence $\{x_n\}$ in X such that

$$x_{3n} \in Fx_{3n-1}, \quad x_{3n-1} \in Gx_{3n-2} \quad \text{and} \quad x_{3n-2} \in Hx_{3n-3} \quad \text{for all } n = 1, 2, 3, \ldots$$

We have $x_1 \in Hx_0$ and since the pair $\{H, G\}$ is weakly comparable, we have $Hx_0 \prec_1 Gx_1$. And so by the definition of \prec_1 there exist $x_2 \in Gx_1$ such that $x_1 \leq x_2$. Again since $x_2 \in Gx_1$ and the pair $\{F, G\}$ is weakly comparable, we have $Gx_1 \prec_1 Fx_2$. And so there exist $x_3 \in Fx_2$ such that $x_2 \leq x_3$. Continuing in this way, we get

$$x_1 \leq x_2 \leq x_3 \ldots x_n \leq x_{n+1} \ldots \quad (3.6)$$

By definition of "\leq", we have

$$\varphi(x_0, t) \leq \varphi(x_1, t) \leq \varphi(x_2, t) \leq \ldots \quad (3.7)$$
for all $t > 0$. In other words, the sequence $\{\varphi(x_n, t)\}$ is nondecreasing sequence of real numbers for all $t > 0$. Since φ is bounded from above, $\{\varphi(x_n, t)\}$ is convergent and hence Cauchy. So, for all $\epsilon > 0$ there exist $n_0 \in N$ such that for all $m > n > n_0$ and $t > 0$. We have $|\varphi(x_m, t) - \varphi(x_n, t)| = \varphi(x_m, t) - \varphi(x_n, t) < \epsilon$.

Therefore, since $x_n \leq x_m$,

$$M(x_n, x_m, t) \geq 1 + \varphi(x_n, t) - \varphi(x_m, t)$$

$$= 1 - [\varphi(x_m, t) - \varphi(x_n, t)]$$

$$> 1 - \epsilon$$

This shows that the sequence $\{x_n\}$ is Cauchy in X and since X is M-complete, it converges to a point $z \in X$. Since the sequences $\{x_{3n}\}$, $\{x_{3n-1}\}$ and $\{x_{3n-2}\}$ are subsequences of $\{x_n\}$ therefore $x_{3n} \rightarrow z$, $x_{3n-1} \rightarrow z$ and $x_{3n-2} \rightarrow z$ with $x_{3n} \in Fx_{3n-1}$, $x_{3n-1} \in Gx_{3n-2}$ and $x_{3n-2} \in Hx_{3n-3}$. Now since F, G and H are order closed, we have $z \in Fz$, $z \in Gz$ and $z \in Hz$ i.e. $z \in Fz \cap Gz \cap Hz$. Hence z is a common fixed point of F, G and H.

Acknowledgment

Authors are grateful to the referees for their valuable suggestions.

References

http://dx.doi.org/10.1016/S0165-0114(00)00088-9.

http://dx.doi.org/10.1016/0165-0114(84)90069-1.

http://dx.doi.org/10.1016/j.fss.2006.11.012.

http://dx.doi.org/10.1016/j.fss.2007.07.006.

http://dx.doi.org/10.1155/S0161171294000372.

http://dx.doi.org/10.1016/S0019-9958(65)90241-X.