A note on an interpolation formula

Richard Fournier*

Department of mathématiques et Centre de recherches mathématiques, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, H3C 3J7, Canada.

Copyright 2013 © Richard Fournier. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
We study an elegant and useful interpolation formula arising from the work of Frappier, Rahman and Ruscheweyh. We give a new and simple proof of that formula based on elementary properties of bound-preserving operators on classes of polynomials and we relate it to other known interpolation formulas.

Keywords: Polynomials, interpolation, discrete Bernstein-type inequalities.

1 Introduction
In this note, we shall study some aspects of an interpolation formula due to Frappier, Rahman and Ruscheweyh. The formula has been introduced in the thesis of Frappier [6] and later also appeared in [7] and [10, p. 524]. Let \(P_n \) denote the class of polynomials of degree at most \(n \) with complex coefficients. The formula reads as, for any \(p \in P_n \) and \(q, y \) real,

\[
e^{i(q+\theta)} p'(e^{i\theta}) = \frac{1}{2n} \sum_{k=1}^{2n} (-1)^k \frac{\sin^2 \left(\frac{k\pi q}{2n} \right)}{\sin^2 \left(\frac{k\pi y}{2n} \right)} p(e^{i\theta + \frac{k\pi q}{n} + \frac{k\pi y}{n}}).
\]

(1.1)

It follows in particular that (choose \(p(z) \equiv z^n \))

\[
\frac{1}{2n} \sum_{k=1}^{2n} \sin^2 \left(\frac{k\pi y}{2n} \right) = n
\]

and for any \(p \in P_n \) (choose \(\psi = -n\theta \))

\[
|p'(e^{i\theta})| \leq n \max_{1 \leq k \leq 2n} |p(e^{ik\pi/n})|, \quad \theta \in \mathbb{R},
\]

(1.2)

which represents a striking extension of the classical Bernstein inequality.

Undoubtedly, interpolation formulas can play an important role in approximation theory. We first mention the formula of Shapiro (see [11, chapter 2] and [13, chapter 3]). Let \(L \) be a linear functional over \(P_n \). There exist complex numbers \(\{ \alpha_j \}_{j=1}^{n+1} \) and distinct nodes \(\{ e^{i\theta_j} \}_{j=1}^{n+1} \) on the unit circle such that

\[
L(p) = \sum_{k=1}^{n+1} \alpha_k p(e^{i\theta_k})
\]

(1.3)

*Corresponding authors. E-mail address: fournier@dms.umontreal.ca
and
\[
\max_{p \in \mathcal{P}_n} \sum_{1 \leq k \leq n+1} |p(e^{i\theta_k})| \leq \sum_{k=0}^{n+1} |\alpha_k|.
\]

We also mention a more recent formula due to Dryanov, Fournier and Ruscheweyh (see [4] for references): Let be given \(n + 1 \) angles \(0 < \theta_0 < \theta_1 < \cdots < \theta_n \leq \pi \) and a linear functional \(L \) over \(\mathcal{P}_n \). There exist complex numbers \(\{\alpha_j\}_{j=0}^n \) such that
\[
L(p) = \sum_{k=0}^{n} \alpha_k p(e^{i\theta_k}) + p(e^{-i\theta_k})
\]
(1.4)
and
\[
\max_{p \in \mathcal{P}_n} \sum_{0 \leq k \leq n} \left| \frac{\alpha_k}{2} \left| L(p) \right| \right| \leq \sum_{k=0}^{n} |\alpha_k|.
\]

It is also not so hard to see that (1.1) with \(\psi = -n \theta \) admits an extension similar to (1.3) and (1.4): given any \(L \in \mathcal{P}_n^* \), there exist \(2n \) complex numbers \(\{\alpha_k\}_{k=0}^{2n-1} \) such that
\[
L(p) = \sum_{k=0}^{2n-1} \alpha_k p(e^{-ik\pi/n})
\]
(1.5)
with
\[
\max_{p \in \mathcal{P}_n} \sum_{0 \leq k \leq n} \left| \frac{\alpha_k}{2} \left| L(p) \right| \right| \leq \sum_{k=0}^{n} |\alpha_k|.
\]

It is not clear whether or not, given an \(L \in \mathcal{P}_n^* \), equality shall hold in (1.6). We have however at our disposal an explicit representation for the numbers \(\{\alpha_k\}_{k=0}^{2n-1} \) in (1.5). Let \(q(z) := \frac{1}{2n} \frac{1-z^n}{1-z} \) and \(q_k(z) = q(z^{1/n^k}) \). Then,
\[
\alpha_k = L(q_k), \quad 0 \leq k \leq 2n - 1.
\]

A similar representation is also available for (1.3) and (1.4).

The formula (1.3) admits extensions to more abstract spaces and its proof is based on non-trivial but basic principles of functional analysis, as seen from [13, chapter 3]. It is also known [4] that (1.4) follows from the Lagrange interpolation formula.

Here we shall present a new proof of (1.1) based on a general bound-preservation result; as a consequence, we shall recover an improvement of (1.2) due to Mohapatra, O’Hara and Rodriguez [9] (see also [1] for a related result) as well as the corresponding cases of equality.

2 Another proof of (1.1)

Our main ingredient is

Lemma 2.1. Let \(|\zeta| = 1 \), \(w_j = e^{2j\pi/n} \) and \(\ell_j(\zeta) = -\frac{|1-\zeta|^2}{n^2} \frac{w_j\zeta^{1/n}}{(1-w_j\zeta^{1/n})^2} \). Then for any \(p \in \mathcal{P}_n \) and any complex number \(z \),
\[
p(z) + \frac{\zeta - z}{n} p'(z) = \sum_{j=1}^{n} \ell_j(\zeta) p(z^{1/n} w_j z)
\]
where \(\ell_j(\zeta) = 0 \) and \(\sum_{j=1}^{n} \ell_j(\zeta) = 1 \).

This is a known result [5] but for the sake of completeness we shall sketch its proof. By the well-known result of de Bruijn [2]
\[
|p(z) + \frac{\zeta - z}{n} p'(z)| \leq \max_{|z|=1} |p(z)|, \quad |\zeta|, |z| \leq 1,
\]
and this is seen to be equivalent with
\[|p(z) + \frac{\zeta - 1}{n}zp'(z)| \leq \max_{|z|=1} |p(z)|, \quad |\zeta|, |z| \leq 1. \]

In other words we have
\[|p(z) \star \sum_{k=0}^{n} \left(1 + \frac{k(\zeta - 1)}{n} \right) \zeta^k| \leq \max_{|z|=1} |p(z)|, \quad |z| \leq 1 \]
(here \(\star \) denotes the Hadamard product of analytic functions) and
\[\Re \left(\sum_{k=0}^{n} \left(1 + \frac{k(\zeta - 1)}{n} \right) \zeta^k + o(z^n) \right) > \frac{1}{2}, \quad |z| < 1, \]
(details can be found in [12, chapter 4]). Now since
\[1 + \frac{k(\zeta - 1)}{n} = |\zeta| = 1 \quad \text{if} \quad k = n, \]
we have a representation ([18, chapter 7])
\[\sum_{k=0}^{n} \left(1 + \frac{k(\zeta - 1)}{n} \right) \zeta^k + o(z^n) = \sum_{j=1}^{n} \frac{\ell_j}{1 - w_j \zeta^{1/n} z^j}, \quad |z| < 1, \]
and for any \(p \in \mathcal{P}_n \), with \(\ell_j \geq 0 \),
\[p(z) + \frac{\zeta - 1}{n}zp'(z) = \sum_{j=1}^{n} \ell_j p(w_j \zeta^{1/n} z). \]
The value of \(\ell_j \) can be obtained by solving the linear system
\[1 + \frac{k(\zeta - 1)}{n} = \sum_{j=1}^{n} w_j ^{k/n} \ell_j, \quad 1 \leq k \leq n. \]
The following consequence of Lemma 2.1 shall be useful; let \(p \in \mathcal{P}_n, |\zeta| = 1 \neq \zeta \) and \(0 \neq z \). Then
\[|p(z) + \frac{\zeta - 1}{n}zp'(z)| \leq \max_{1 \leq j \leq n} |p(z^{1/n} w_j z)| \tag{2.7} \]
with equality if and only if \(p \) is a binomial of the type \(p(u) \equiv A + Bu^n \).

We are now ready to give our proof of (1.1). We have by Lemma 2.1,
\[\frac{2\zeta z p'(z)}{n} = \left(p(z) + \frac{\zeta - 1}{n} z p'(z) \right) - \left(p(z) + \frac{-\zeta - 1}{n} z p'(z) \right) \]
\[= \sum_{j=1}^{n} \ell_j(\zeta) p(\zeta^{1/n} w_j z) - \ell_j(-\zeta) p((-\zeta)^{1/n} w_j z) \]
where for \(\zeta = e^{i\psi} \)
\[\ell_j(\zeta) = \frac{1 - |\zeta|^2}{n^2} \frac{w_j \zeta^{1/n}}{(1 - w_j \zeta^{1/n})^2} \]
\[= \sin^2 \left(\frac{\psi}{2} \right) / n^2 \sin^2 \left(\frac{j\pi}{n} + \frac{\psi}{2n} \right) \]
\[= \frac{n^2 \sin^2 \left(\frac{2\pi}{n} + \frac{\psi}{2n} \right)}{n^2 \sin^2 \left(\frac{2\pi}{n} + \frac{\psi}{2n} \right)} \]
and

\[\ell_j(-\zeta) = \frac{\sin^2\left(n \left(\frac{2j\pi}{2n} + \frac{\psi + \pi}{2n} \right) \right)}{n^2 \sin^2\left(n \left(\frac{2j\pi}{2n} + \frac{\psi + \pi}{2n} \right) \right)} \]

Therefore for any complex number \(z \),

\[e^{i\psi}z^p'(z) = \frac{1}{2n} \left(\sum_{k=1}^{2n} \sin^2\left(\frac{ki\pi}{2n} + \frac{\psi + \pi}{2n} \right) \right) p(e^{i\psi}z^p(z)) - \sum_{k=1}^{2n} \sin^2\left(\frac{ki\pi}{2n} + \frac{\psi + \pi}{2n} \right) \]

and this is of course equivalent with (1.1).

Now let \(m \geq 2 \) and consider the \(m \) distinct roots of unity \(r_k = e^{\frac{2\pi k}{m}}, 1 \leq k \leq m \). We have for any complex number \(z, |\zeta| = 1 \) and by (2.7),

\[\left| z^p(z) \right| \leq \frac{1}{m} \left| \sum_{k=1}^{m} \left(p(z) + \frac{r_k\zeta - 1}{n} z^p(z) \right) \right| \leq \frac{1}{m} \left| \sum_{k=1}^{m} \max_{1 \leq j \leq n} |p(\zeta^{1/n}r_k^{1/n}w_jz)| \right| \]

and since \(\zeta \) is arbitrary

\[\left| z^p(z) \right| \leq \frac{1}{m} \sum_{k=1}^{m} \max_{1 \leq j \leq n} |p(r_k^{1/n}w_jz)|. \]

The case \(m = 2 \) of (2.8) is the inequality of Mohapatra \textit{et al.} alluded to above. It is clear that two consequences of (2.8) are

\[\left| z^p(z) \right| \leq \max_{1 \leq j \leq n} \left| p\left(e^{\frac{2\pi j}{m}} |z| \right) \right| \]

and (as \(m \to \infty \))

\[\left| z^p(z) \right| \leq \frac{1}{2\pi} \int_{0}^{2\pi} \max_{1 \leq j \leq n} \left| p(e^{j\theta}/w_jz) \right| d\theta. \]

We finally claim, as a consequence of the equality case in (2.7), that, for a given non-zero complex number \(z \), equality shall hold in (2.8) only for polynomials of the type \(p(u) \equiv A u^q \); the proof of this is left to the reader.

3 Concluding remarks

It may be interesting (and we are unable to settle this question) to decide if equality holds in (1.6) for all functionals \(L \)? This is easily seen to be true for the functional \(L_0(p) = p(0) \) and also, as a consequence of (1.1), for the functional \(L_\theta(p) = e^{i\theta} p(e^{i\theta}) \). What makes this question challenging is the number 2n of sample points in (1.5) as
when compared to the number $n + 1$ of sample points in Shapiro’s formula (1.3). We do not really understand why such a relatively big number of sample points is needed for a formula like (1.5) to be valid; partial answers were given in [13] and particularly in [3, Theorem 1.1] where an extension of (1.2) was given for polynomials p in \mathcal{P}_{2n} (as opposed to \mathcal{P}_n in (1.2)).

It is finally worth mentioning that in the case where $\theta_k = \frac{k\pi}{n}$, $0 \leq k \leq n$, the interpolation formulas (1.4) and (1.5) shall not be the same, even if they coincide for certain functionals, for example $L(p) = p'(1)$!

References

 http://dx.doi.org/10.1016/0022-247X(89)90370-3

 http://dx.doi.org/10.1016/j.jmaa.2012.06.034

 http://dx.doi.org/10.1090/S0002-9947-1985-0773048-1

 http://dx.doi.org/10.1090/S0002-9939-1988-0928994-0

