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Abstract
The Production Possibility Set (PPS) is defined as a set of inputs and outputs of a system in which inputs can pro-
duce outputs. The Production Possibility Set of the Data Envelopment Analysis (DEA) model is contain of two types
defining hyperplanes (facets); strong and weak efficient facets. In this paper, the problem of finding weak defining
hyperplanes of the PPS of the CCR model is dealt with. However, the equation of strong defining hyperplanes of the
PPS of the CCR model can be found in this paper. We state and prove some properties relative to our method. To
illustrate the applicability of the proposed model, some numerical examples are finally provided. Our algorithm can
easily be implemented using existing packages for operation research, such as GAMS.
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1 Introduction

The Data Envelopment Analysis (DEA), introduced by Charnes, Cooper and Rhodes (CCR) [6], is a procedure to
evaluate the relative efficiency of a set of decision making units (DMU); each uses multiple inputs to produce multiple
outputs. The data define a Production Possibility Set (PPS); that can be used to evaluate the efficiency of each of
DMUs. The PPS of the DEA models is the smallest set containing the observed DMUs and all feasible input-output
level correspondences pertaining to the production process operated by the DMUs. The PPS of the CCR model is the
intersection of a finite number of halfspace, whose defining hyperplanes pass through the origin.
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The defining hyperplanes (facets) of the PPS of the CCR model are divided into two categories, including i) strong
defining hyperplanes, and ii) weak defining hyperplanes. One of the problems in DEA is to find the equations of these
defining hyperplanes. There are many researches undertaken on the subject of finding strong defining hyperplanes
(see for example Amirteimoori et al. [1], Amirteimoori et al. [2], M. Davtalab-Olyaie et al. [7], Jahanshahloo et al.
[11], Jahanshahloo et al. [10], Yu et al. [16], Wei et al. [15], Hosseinzadeh et al. [9] and Olesen et al. [14]). However,
less attention has been paid about finding weak defining hyperplanes of the PPS of the CCR model (see Wei et al.
[15]). In this paper we provide a method to find weak defining hyperplanes of the PPS of the CCR model.
Using the method proposed by Jahanshahloo et al. [11] (with some modifications) we introduce a method to find the
equations of weak defining hyperplanes of the PPS of the CCR model. The idea to find weak defining hyperplanes
is straightforward by adding artificial weak efficient DMUs, named weak efficient virtual DMUs in this paper. The
key is how to define these artificial weak efficient DMUs, and it is done by testing all CCR-efficient DMUs by a
variance of super-efficiency models (see models (3.5) and (3.6))(after eliminating all CCR-inefficient DMUs from
the PPS) and determining all extreme DMUs that lie on the some weak efficient defining hyperplanes. A supporting
hyperplane is found to be a weak defining hyperplane if at least one artificial DMU lies on it. Using this method, it
is possible to check (i) which CCR-efficient DMUs lie on the extreme rays (edges) of the PPS of the CCR model,
(ii) which extreme DMUs lie on the some weak defining hyperplanes of the PPS of the CCR model, (iii) how many
weak and strong defining hyperplanes they are on. Also, these hyperplanes are useful in finding the closet target for
inefficient DMUs and in sensitivity and stability analysis (see Jahanshahloo et al. [12]). Finally, knowledge of weak
facets is required for a thorough analysis, in particular, when the PPS is constructed only of weak facets (see Figure
1 and remark 2.2). These may show the importance of obtaining the weak defining hyperplanes of the PPS of DEA
models. Some useful facts related to the properties of models (3.5) and (3.6) are stated and proved. In addition, three
numerical examples are provided.

2 Background

Consider a set of n DMUs which is associated with m inputs and s outputs. Particularly, each DMU j = (X j,Yj)
( j ∈ J = {1, . . . ,n}) consumes amount xi j(> 0) of input i and produces amount yr j(> 0) of output r. The production
possibility set T , T ⊂

{
(X ,Y )|X ∈ Em,Y ∈ Es,X > 0,Y > 0

}
is based on postulate sets which are presented with a

brief explanation (see Banker [4], Banker et al. [3] and Yu et al. [16]). One of the DEA models to evaluate the relative
efficiency of a set of DMUs is the CCR model, which is, proposed by Charnes et al. [6]. The production possibility
set (PPS) of the CCR model can be defined as follows:

T =
{
(X ,Y )|X = ∑

j∈J
λ jX j, Y 5 ∑

j∈J
λ jYj, λ j > 0, j ∈ J

}
.

in which X j and Yj are vectors of input and output of DMU j, respectively.
A face of a polyhedral set is the support set of a supporting hyperplane.
A facet of a k-dimensional polyhedral set is a k−1 dimensional face. In fact, any facet of the PPS of the DEA model
is a defining hyperplane of the PPS.
Note: A CCR-efficient DMU is said to be extreme DMU; if it lies on the edge of the PPS of the CCR model.

The PPS of the CCR model is depicted in Figure 2. In Figure 1, DMUs D1 and D2 are extreme DMUs and CCR-
efficient DMU D3, that lies on the strong defining hyperplane H1 is non-extreme DMUs.
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The input-oriented CCR model, corresponds to DMUk, k ∈ J, is given by:

min θ − ε(
m

∑
i=1

s−i +
s

∑
r=1

s+r )

s.t. ∑
j∈J

λ jyr j − s+r = yrk, r = 1, ...,s

∑
j∈J

λ jxi j + s−i = θxik, i = 1, ...,m

λ j ≥ 0, j ∈ J
s−i ≥ 0, i = 1, ...,m
s+r ≥ 0, r = 1, ...,s
θ f ree

(2.1)

Also, the output-oriented CCR model, corresponds to DMUk, k ∈ J, is as follows:

max φ + ε(
m

∑
i=1

t−i +
s

∑
r=1

t+r )

s.t. ∑
j∈J

λ jyr j − t+r = φyrk, r = 1, ...,s

∑
j∈J

λ jxi j + t−i = xik, i = 1, ...,m

λ j ≥ 0, j ∈ J
t−i ≥ 0, i = 1, ...,m
t+r ≥ 0, r = 1, ...,s
φ f ree

(2.2)

where ε is non-Archimedean small and positive number. Models (2.1) and (2.2) are called envelopment forms (with
non-Archimedean number).
DMUk is said to be strong efficient (CCR-efficient) if and only if for each optimal solutions, either (i) or (ii) happen:

(i) θ ∗ = 1 and (s+∗, s−∗) = (0, 0)

(ii) φ∗ = 1 and (t+∗, t−∗) = (0, 0)

DMUk is said to be weak efficient if and only if for some optimal solutions, either (v) or (iv) happen:

(v) θ ∗ = 1 and (s+∗, s−∗) ̸= (0, 0)

(iv) φ∗ = 1 and (t+∗, t−∗) ̸= (0, 0)

Note that if θ ∗ < 1 and φ∗ > 1 then DMUk is an interior point of the PPS. 1

Each interior DMU and weak efficient DMU in the CCR model is said to be a CCR-inefficient DMU .
Efficient Frontier is the set of all points (real or virtual DMUs) with efficiency score is equal to unity (θ ∗ = 1 or
φ∗ = 1).
Efficient frontier is divided into two categories:

i) Strong efficient frontier is the set of all (real or virtual) strong efficient (CCR efficient) DMU.

ii) Weak efficient frontier in which all it’s relative interior points (real or virtual DMUs), are weak efficient DMUs.

DMUk = (Xk,Yk) is said to be non-dominated if and only if there is not any DMU = (X ,Y ) (real or virtual) such that:
(−Xk,Yk)≥ (−X ,Y ) and (−Xk,Yk) ̸= (−X ,Y ).

We use the following theorem in the next section.

1(*) is used for optimal solution.
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Theorem 2.1. There does not exist any virtual DMU (a member of the PPS) that dominates an DEA-efficient DMU.

Proof. See H. Fukuyama et al. [8].

The dual of models (2.1) and (2.2) (without ε i.e. ε=0), which are called multiplier forms, are as models (2.3) and
(2.4), respectively:

max
s

∑
r=1

uryrk

s.t.
s

∑
r=1

uryr j −
m

∑
i=1

vixi j ≤ 0, j = 1, ...n

m

∑
i=1

vixik = 1,

ur ≥ 0, r = 1, ...,s
vi ≥ 0, i = 1, ...,m

(2.3)

min
m

∑
i=1

vixik

s.t.
m

∑
i=1

vixi j −
s

∑
r=1

uryr j ≥ 0, j = 1, ...n

s

∑
r=1

uryrk = 1,

ur ≥ 0, r = 1, ...,s
vi ≥ 0, i = 1, ...,m.

(2.4)

DMUk is strong efficient if there exists at least one optimal solution (u∗,v∗) for (2.3) with (u∗,v∗) > 0, and u∗yk = 1
in which u∗ = (u∗1,u

∗
2, ...,u

∗
s ) and v∗ = (v∗1,v

∗
2, ...,v

∗
m). Also DMUk is weak efficient if u∗yk = 1 and no (u∗,v∗) > 0

exists. In this case there exist at least one r (or i) so that u∗r = 0 (or v∗i = 0) in all optimal solution of model (2.3) or
(2.4) (see example 4.3.). In Figure 2, DMUs D1, D2 and D3 are strong efficient and D′

2 is weak efficient DMU. The
evaluation of D3 and D′

2 shows that, model (2.3) has unique optimal solution, which defines two supporting2 defining
hyperplanes H1 and H2 passing through D3 and D′

2, respectively. On the other hand, the evaluation of D1 indicate that,
model (2.3) has alternative optimal solutions, which defines an infinite number of supporting hyperplanes passing
through D1. Only two of these hyperplanes (i.e. H1 and H3) are defining hyperplanes. In fact, if (u∗,v∗) is an unique
optimal solution of model (2.3) then ut∗y− vt∗x = 0 is the equation of defining hyperplane of the PPS. In addition, if
(u∗,v∗)> 0, ut∗y− vt∗x = 0 is the equation of strong defining hyperplane of the PPS (see Definition 2.1). Otherwise,
if some components of (u∗,v∗) are zero, then ut∗y− vt∗x = 0 is the equation of weak defining hyperplane of the PPS
(see Definition 2.2). A similar discussion holds for model (2.4).
Note that the hyperplanes H2 and H3 are weak defining hyperplanes and H1 is strong defining hyperplane of the PPS
of the CCR (see Definitions 2.1 and 2.2.).
In this paper, corresponding to each strong efficient DMU DMU j = (x1 j, ...,xm j,y1 j, ...,ys j) we consider virtual DMUs
DMU ′

j = (x1 j, ...,xl j +α, ...,xm j,y1 j, ...,ys j) and DMU ′′
j = (x1 j, ...,xm j,

y1 j, ...,yq j − γ, ...,ys j), in which α ,γ > 0. These virtual DMUs are either interior point of the PPS of the CCR model
or lie on the some weak defining hyperplanes (see Definition 2.2 and properties 3.2-3.7). In the latter case we call
these virtual DMUs as “weak efficient virtual DMU”, hereafter. (See DMU D

′
2 in Figure 2 and DMUs D

′
1, D

′′′
1 in

Figure 1, for example).

Definition 2.1. The supporting hyperplane H = {(x,y)| ūty− v̄tx = 0,(ū, v̄) ≥ 0,(ū, v̄) ̸= 0} of the PPS of the CCR
model is strong defining hyperplane of the PPS if only if it is “defining” and m + s − 1(=the number of outputs
and inputs minus one) strong efficient DMUs of the PPS, which are linear independent, lie on H. (In this case, all
components of (ū, v̄) are positive.)

2For definition and properties see Bazaraa et al. [5].

International Scientific Publications and Consulting Services



Journal of Data Envelopment Analysis and Decision Science 2017 No.2 (2017) 28-49
http://www.ispacs.com/journals/dea/2017/dea-00145/ 32

Definition 2.2. The supporting hyperplane H = {(x,y)| ūty− v̄tx = 0,(ū, v̄) ≥ 0,(ū, v̄) ̸= 0} of the PPS of the CCR
model is weak defining hyperplane of the PPS if and only if it is “defining” and m+ s− 1 weak efficient virtual and
strong efficient DMUs of the PPS, which are linear independent, lie on H. (In this case, some components of (ū, v̄) are
zero.)

Remark 2.1. In the equation of weak defining hyperplane, if ūq = 0 (or v̄l=0), then, this hyperplane is vertical to
hyperplane yq = 0 (or xl = 0). In the case of xl = 0, the weak defining hyperplane passes through of lth axis of input.

Remark 2.2. If the number of strong efficient DMUs are less than m+ s−1 then all defining hyperplanes of the PPS
are weak defining hyperplanes (because, by Definition 2.1, at least m+ s− 1 strong efficient DMUs are needed to
construct strong defining hyperplane).

In this research, we first find the extreme DMUs of the PPS of the CCR model, lying on the some weak defining
hyperplanes, and then using models (3.5) and (3.6), the foregone weak efficient virtual DMUs are found. By using
them, we find the weak defining hyperplane of the PPS of the CCR model.

Throughout this paper, we must assume that there are not any two strong efficient DMUs as (x,y) and (tx, ty) for
all t > 0 and t ̸= 1. Otherwise, one of them must be deleted.

3 Identifying equations of weak defining hyperplanes

In this section, we identify the equations of weak defining hyperplanes of the PPS of the CCR model in the
following way. First, we evaluate each DMUk, (k ∈ J) using, models (2.1) or (2.2). Then, we hold all CCR-efficient
DMUs, and remove other DMUs. Suppose that the set of all CCR-efficient DMUs is denoted by E. Corresponding to
each DMUk = (x1k, ...,xmk,y1k, ...,ysk), (k ∈ E), we solve the following models:

min θ k
l

s.t. ∑
j∈E−{k}

λ k
j xl j ≤ θ k

l xlk

∑
j∈E−{k}

λ k
j xi j ≤ xik, i = 1, ...,m i ̸= l

∑
j∈E−{k}

λ k
j yr j ≥ yrk, r = 1, ...,s

λ k
j ≥ 0, j ∈ E −{k}

θ k
l f ree l = 1, ...,m

(3.5)

max φk
q

s.t. ∑
j∈E−{k}

µk
j xi j ≤ xik, i = 1, ...,m

∑
j∈E−{k}

µk
j yq j ≥ φk

qyqk,

∑
j∈E−{k}

µk
j yr j ≥ yrk, r = 1, ...,s r ̸= q

µk
j ≥ 0, j ∈ E −{k}

φk
q f ree q = 1, ...,s

(3.6)

The following properties hold for models (3.5) and (3.6). By property 3.1 we can find all extreme CCR-efficient
DMUs. The properties 3.3, 3.4, 3.6, and 3.7 provide the necessary and sufficient conditions for lying an extreme
CCR-efficient DMU on the weak defining hyperplane.

Property 3.1. In model (3.5) (or (3.6)), if for some l (or q), θ k∗
l > 1 (or φk∗

q < 1) or if for some l(or q), model (3.5)
(or model (3.6)) is infeasible, then, DMUk is an extreme DMU and vice versa.
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Proof. Suppose that θ k∗
l > 1. First, we show that DMUk is CCR-efficient. By contradiction let DMUk is inefficient.

At optimality of model (2.1), two cases are happened:

(i) θ ∗ = 1 and (s+∗,s−∗) ̸= 0

(ii) θ ∗ < 1

in each cases it can be shown that θ k∗
l ≤ 1, a contradiction.

Now we show that DMUk is ,in fact, an extreme CCR-efficient DMU. By contradiction suppose that DMUk is an
non-extreme CCR-efficient. So, the following system has solution:

∑
j∈E ′

λ jx j = xk,

∑
j∈E ′

λ jy j = yk,

λ j ≥ 0, j ∈ E ′

(3.7)

Suppose that (λ̄ j, j ∈ E ′) is a solution of the above system. If λ̄ j = 0 then, (θ k
l = 1,λ j = λ̄ j, j ∈ E ′−{k}) is a solu-

tion of model (3.5). Therefor, θ k∗
l ≤ 1, a contradiction. On the other hand if λ̄ j ̸= 0, we rewrite system (3.7) as follows:

∑
j∈E ′−{k}

λ̄ jx j = (1− λ̄ j)xk,

∑
j∈E ′−{k}

λ̄ jy j = (1− λ̄ j)yk,

By divided both side of the above equations by (1− λ̄ j > 0); we obtain a solution of model (3.5) as (θ k
l = 1,λ j =

λ̄ j

1−λ̄ j
, j ∈ E ′ −{k}). Therefor, θ k∗

l ≤ 1, a contradiction. Thus, DMUk is an extreme CCR-efficient DMU. Now,

suppose that for some l, model (3.5) is infeasible. In the similar manner, it can be shown that DMUk is an extreme
CCR-efficient DMU. Conversely, suppose that DMUk is extreme DMU and model (3.5) is feasible. We show that
θ k∗

l ≥ 1. Consider the following corresponding to DMUk:

min θ
′k
l

s.t. ∑
j∈E ′

λ k
j xl j + s−l = θ

′k
l xlk

∑
j∈E ′

λ k
j xi j + s−i = xik, i = 1, ...,m i ̸= l

∑
j∈E ′

λ k
j yr j − s+r = yrk, r = 1, ...,s

λ k
j ≥ 0, j ∈ E ′

s−i ≥ 0,s+r ≥ 0 i = 1, ...,m, r = 1, ...,s
θ ′k

l f ree l = 1, ...,m

(3.8)

Now suppose that θ ∗(= 1), θ ′k∗
l and θ k∗

l are the optimal objective functions of the models (2.1), (3.8) and (3.5) with
respect to DMUk, respectively. It is not difficult to show that θ ∗ ≤ θ ′k∗

l ≤ θ k∗
l . Therefor, θ k∗

l ≥ 1.
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Figure 1: Properties 3.2 and 3.6.

This completes the proof.

Property 3.2. In models (3.5) and (3.6), for each l and q, θ k∗
l = φk∗

q = 1 if and only if DMUk is a non-extreme
CCR-efficient DMU.

Proof. Omitted.

Property 3.3. In a single input case, for each DMUk =(x1k,y1k, ...,ysk), the virtual DMU DMU
′
k =(x1k+α ,y1k, ...,ysk),

in which α > 0, is an interior point of the PPS of the CCR model.

Proof. First, we add DMU
′
k to the PPS and then, evaluate its performance by the input and output-oriented CCR model(

see models (2.1) and (2.2)
)
. It is enough to show that θ ∗ < 1 and φ∗ > 1. Consider the input-oriented CCR model

corresponding to virtual DMU DMU
′
k as follows:

min θ
s.t. ∑

j∈E
λ jx1 j +µk(x1k +α)≤ θ(x1k +α),

∑
j∈E

λ jyr j +µkyrk ≥ yrk, r = 1, ...,s

λ j ≥ 0, j ∈ E
θ f ree

(3.9)

(
λ̄ j = 0( j ̸= k), λ̄k = 1, µ̄k = 0, θ̄ = x1k

x1k+α (< 1)
)

is a feasible solution of (3.9). Since model (3.9) has a minimization-
type objective function, θ ∗ < 1; where “*” is used to indicate optimality. In a similar manner, it can be shown that
in output-oriented maximization problem, φ∗ > 1. Therefore, DMUk is an interior point of PPS. This completes the
proof.

In Figure 1, corresponding to DMU D1 = (x11,y11,y21), virtual DMU D′′
1 = (x11 +α,y11,y21) is an interior point of

the PPS.

Property 3.4. In a multiple inputs case, if for some l, model (3.5) is infeasible, then CCR-efficient DMUk lies on the
weak defining hyperplane, which passes through the lth axis of input.
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Proof. We show that if for one l, model (3.5) is infeasible, then, virtual DMU
DMU

′
k =(x1k, ...,x(l−1)k,xlk+α,x(l+1)k, ...,xmk,y1k, ...,ysk), in which α > 0, is on the weak defining hyperplane, which

passes through the lth axis of input. For this aim, we show that in the performance evaluation of DMU
′
k using model

(2.2); φ∗ = 1. Consider model (2.2) corresponding to virtual DMU DMU
′
k as follows (without ε):

max φ

s.t. ∑
j∈E

λ jyr j +µkyrk ≥ φyrk, r = 1, ...,s

∑
j∈E

λ jxi j +µkxik ≤ xik, i = 1, ...,m, i ̸= l

∑
j∈E

λ jxl j +µk(xlk +α)≤ xlk +α

µk,λ j ≥ 0, j ∈ E
φ f ree

(3.10)

By contradiction, suppose that
(
λ ∗

j ( j ∈ E), µ∗
k , φ∗(> 1)

)
is the optimal solution of (3.10). The constraints of model

(3.10) can be written as follows:

∑
j∈E−{k}

λ ∗
j yr j > (1−λ ∗

k −µ∗
k )yrk, r = 1, ...,s

∑
j∈E−{k}

λ ∗
j xi j ≤ (1−λ ∗

k −µ∗
k )xik, i = 1, ...,m, i ̸= l

∑
j∈E−{k}

λ ∗
j xl j ≤ (1−λ ∗

k −µ∗
k )xlk +(1−µ∗

k )α

(3.11)

From model (3.11), it is easy to show that 1−λ ∗
k −µ∗

k > 0. Divide both sides of model (3.11) by 1−λ ∗
k −µ∗

k > 0 and

define µ̄ j =
λ ∗

j

1−λ ∗
k −µ∗

k
, j ∈ E −{k}; so, model (3.11) becomes as follows:

∑
j∈E−{k}

µ̄ jyr j > yrk, r = 1, ...,s

∑
j∈E−{k}

µ̄ jxi j ≤ xik, i = 1, ...,m, i ̸= l

∑
j∈E−{k}

µ̄ jxl j ≤ xlk +β

(3.12)

in which β =
( 1−µ∗

k
1−λ ∗

k −µ∗
k

)
α . Since β > 0, there is θ̂ > 0 so that xlk +β = θ̂xlk; therefore, the constraints of model

(3.11) can be rewritten as follows:

∑
j∈E−{k}

µ̄ jyr j > yrk, r = 1, ...,s

∑
j∈E−{k}

µ̄ jxi j ≤ xik, i = 1, ...,m, i ̸= l

∑
j∈E−{k}

µ̄ jxl j ≤ θ̂xlk

So, (µ̄ j ( j ∈ E −{k}), θ̂) is a feasible solution for model (3.5); a contradiction. This implies that φ∗ = 1 i.e. DMU ′
k

lies on the efficient frontier. Now, since DMU ′
k is dominated by CCR-efficient DMUk, so, DMU ′

k lies on the weak
efficient frontier (hyperplane). Moreover, it is easy to shows that in the equation of this weak efficient hyperplane;
vl = 0 and so by remark 2.1 this hyperplane passes through the lth axis of input. This completes the proof.
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Figure 2: Strong and weak defining hyperplanes of the PPS; Property 3.3

In Figure 2, model (3.5) corresponding to DMU D2 = (x12,x22,y2) with l = 1 is infeasible; so, virtual DMU D′
2 =

(x12 +α,x22,y2) is on the weak defining hyperplane, which passes through x1-axis and vertical to hyperplane x1=0.

The following property is, in fact, the converse of property 3.3.

Property 3.5. In a multiple inputs case, if extreme CCR-efficiency DMU DMUk = (x1k, ...,xlk, ...
,xmk,y1k, ...,ysk) lies on the weak defining hyperplane which passes through the lth axis of input (vertical to hyperplane
xl=0); then model (3.5) is infeasible.

Proof. By contradiction, suppose that the model (3.5) is feasible. The first constraint of the model (3.5) implies that
the optimal solution of the model (3.5) is bounded. Suppose that,

(
θ k∗

l ,λ ∗
j ( j ̸= k)

)
is an optimal solution of it. Note

that the first constraint of the model (3.5) is tight at optimality. We first show that θ k∗
l > 1. By contradiction, suppose

that θ k∗
l ≤ 1. If θ k∗

l < 1 we have:

∑
j∈E−{k}

λ k∗
j xl j = θ k∗

l xlk < xlk

∑
j∈E−{k}

λ k∗
j xi j ≤ xik, i = 1, ...,m i ̸= l

∑
j∈E−{k}

λ k∗
j yr j ≥ yrk, r = 1, ...,s

(3.13)

It shows that virtual DMU

( ∑
j∈E−{k}

λ k∗
j xl j, ..., ∑

j∈E−{k}
λ k∗

j xl j, ..., ∑
j∈E−{k}

λ k∗
j xm j, ∑

j∈E−{k}
λ k∗

j y1 j, ..., ∑
j∈E−{k}

λ k∗
j ys j)

dominates the CCR-efficient DMUk, a contradiction (see Theorem (3.1)). Now, if θ k∗
l = 1, we have:

∑
j∈E−{k}

λ k∗
j xl j = xlk

∑
j∈E−{k}

λ k∗
j xi j ≤ xik, i = 1, ...,m i ̸= l

∑
j∈E−{k}

λ k∗
j yr j ≥ yrk, r = 1, ...,s

(3.14)

At least one of the inequality constraints of (3.14) is a strict inequality, because, otherwise, the CCR-efficient DMUk,
is not extreme DMU. So, θ k∗

l > 1. Therefor, there exist β > 0 so that, θ k∗
l xlk = xlk +β . This means that, the virtual
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DMU DMU
′
k = (x1k, ...,x(l−1)k,xlk +β ,x(l+1)k, ...,xmk,y1k, ...,ysk) is, in fact, an observed DMU belongs to the PPS of

the CCR model. This is a contradiction. Because, we had been eliminated all the CCR-inefficient DMUs from the
PPS of the CCR model. The proof is completed.

Figure 3: Property 3.5

Property 3.6. In a single output case, for each DMUk =(x1k, ...,xmk,y1k), virtual DMU DMU
′
k =(x1k, ...,xmk,y1k−γ),

in which γ > 0, is an interior point of the PPS of the CCR model.

Proof. The proof is similar to property 3.2 and so, we omit the details.

In Figure 3, virtual DMU D′ = (x1,x2,y1 − γ), corresponding to DMU D = (x1,x2,y1) is an interior point of PPS).

Property 3.7. In a multiple outputs case, if for some q, model (3.6) is infeasible, then, CCR-efficient DMUk lies on
the weak defining hyperplane of the PPS, vertical to hyperplane yq=0.

Proof. The proof is similar to property 3.3 except it can be shown that in the performance evaluation of DMU
′
k using

model (2.1); θ ∗ = 1.

In Figure 1, model (3.6) corresponding to DMU D1 = (x11,y11,y21), with q = 2, is infeasible, so, virtual DMU
D′

1 = (x11,y11,y21 − γ) lies on the weak defining hyperplane of the PPS vertical to hyperplane y2=0.

The following property is, in fact, the converse of property 3.6.

Property 3.8. In a multiple outputs case, let extreme CCR-efficiency DMU DMUk = (x1k, ...,xmk,
y1k, ...,yqk, ....,ysk) lies on the weak defining hyperplane vertical to hyperplane yq = 0; then model (3.6) is infeasible.

Proof. The proof is similar to property 3.4. So, we omit it.

Now, by property 3.1 we can find all extreme DMUs of the PPS of the CCR model and by Properties 3.2, 3.3 and 3.4 we
can find all weak efficient virtual DMUs as DMU

′
k =(x1k, ...,x(l−1)k,xlk+α,x(l+1)k, ...,xmk,y1k, ...,ysk), in which α > 0

and by Properties 3.5, 3.6 and 3.7 we can find all weak efficient virtual DMUs as DMU ′
k = (x1k, ...,xmk,y1k, ...,yqk −

β , ....,ysk), in which β > 0. Put indices of the weak efficient virtual DMUs, in F . Without lose of generality we can
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assume that F ∪E = {DMU1, ...,DMUL}. Consider the set G = {1, ...,L}. Now, we use the method proposed by
Jahanshahloo et al. [11] to find all weak defining hyperplanes of the PPS of the CCR model with some modifications.
We modify their method for simplifying the process of finding coplanar DMUs. More importantly, we need the
following theorems:

Theorem 3.1. Let (xp,yp) and (xq,yq) be observed DMUs that lie on a strong (or weak) supporting hyperplane, then
each convex combination of them is on the same hyperplane.

Proof. See Jahanshahloo et al. [11].

Theorem 3.2. Consider (xp,yp) and (xq,yq) are two observed DMUs that lie on different hyperplanes (excluding
their intersection, if it is not empty). Then every point (virtual DMU) which is obtained by strict convex combination
of them is an interior point of PPS. In other words, this virtual DMU is radial inefficient.

Proof. See Jahanshahloo et al. [11].

The method is as follows:
Using the above Theorems we first determine all coplanar DMUs in G (i.e. all DMUs that are on the same defining
hyperplane). Take a distinct pair DMUp and DMUq, where p and q belong to G, and construct a virtual DMU as
follows: DMUk= 1

2 DMUp+ 1
2 DMUq. Using the DEA models, we can determine whether or not DMUk is efficient.

In the first case, by Theorem 3.2, DMUp and DMUq are on the same hyperplane; in the second case, they are not
(by Theorem 3.1). For each l ∈ G, define Gl =

{
j| DMUl and DMU j, j ∈ G, are coplanar

}
. It is obvious that if

{l1, l2, ..., lp} ⊆ Gl1 ∩Gl2 ∩ ...∩Glp , then, DMUs l1, l2, ..., lp are coplanar.

Example 3.1. In Figure 4, 1, 2, ..., 6 are six DMUs. Since there exists a plane that binding from 1 and 2, therefore
1 ∈ G2 and 2 ∈ G1 and so on. Then, G1 = {1,2,3}, G2 = {1,2,3,4,5}, G3 = {1,2,3,4,5}, G4 = {2,3,4,5,6},
G5 = {2,3,4,5,6}, G6 = {4,5,6}.
{1,2,3} ⊆ G1 ∩G2 ∩G3 therefor, DMUs 1, 2, 3, are coplanar.
{2,3,4,5} ⊆ G2 ∩G3 ∩G4 ∩G5 therefor, DMUs 2, 3, 4, 5 are coplanar.
{4,5,6} ⊆ G4 ∩G5 ∩G6 therefor, DMUs 4, 5, 6 are coplanar.

We choose an arbitrary m+ s− 1 members of G such that {l1, l2, ..., lm+s−1} ⊆ Gl1 ∩Gl2 ∩ ...∩Glm+s−1 . We call this
set D = { j1, . . . , jm+s−1}.

Using D, a hyperplane can be constructed as follows:

∣∣∣∣∣∣∣∣
x1 · · · xm y1 · · · ys
x1 j1 · · · xm j1 y1 j1 · · · ys j1
. . . . . .
. . . . . .
. . . . . .
x1 jm+s−1 · · · xm jm+s−1 y1 jm+s−1 · · · ys jm+s−1

∣∣∣∣∣∣∣∣= 0, (3.15)

where x1, . . . ,xm,y1, . . . ,ys are variables, xp jt ,(p = 1, . . . ,m, t = 1, . . . , m+ s−1) is p th input of DMU jt and yq jt (q =
1, . . . ,s; t = 1, . . . ,m+ s−1) is q th output of DMU jt .
Suppose that the equation of the above mentioned hyperplane is in the form of Ptz= 0, where z=(x1, . . . ,xm,y1, . . . ,ys),
and P is the gradient vector of the hyperplane. Considering Theorem 3.3, we can find all equations of weak and strong
defining hyperplanes of PPS.

Theorem 3.3. Consider H = {z| Ptz = 0} so that Ptz = 0 is constructed by (12). Suppose w = (xw
1 , . . . ,x

w
m,y

w
1 , . . . ,y

w
s )

is defined as follows:
xw

i = max{xi j| j = 1, . . . ,n} i = 1, . . . ,m
yw

r = min{yr j| j = 1, . . . ,n} r = 1, . . . ,s
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Call w Negative Ideal (NI) if
Ptz j = 0 j ∈ D
Ptz j ≤ 0 j ∈ G−D
Ptw < 0
then H is supporting.

Proof. See Jahanshahloo et al. [11].

Now we are in the position to put all together the ingredients of the method.

Summary of finding all Weak Defining Hyperplanes algorithm

• Step 1. Evaluate n DMUs with a suitable form of models (2.1) and, (2.2). Hold all CCR-efficient DMUs and
remove other DMUs. Put indices of this strong efficient DMUs in E.

• Step 2. Evaluate each CCR-efficient DMUs with models (3.5) and (3.6). (Note that in the single output case we
use model (3.5) and in the single input case we use model (3.6)). Denote the index set of weak efficient virtual
DMUs by F . Suppose that F ∪E = {DMU1, ...,DMUL} and G = {1, ...,L}.

• Step 3. For each p,q ∈ G that p ̸= q, evaluate DMUk =
1
2 DMUp+ 1

2 DMUq if it is efficient p ∈ Gq and q ∈ Gp.

• Step 4. For each j ( j = 1, . . . ,L), compute G j.

• Step 5. Choose arbitrary m+ s−1 members of G such that {l1, l2, ..., lm+s−1} ⊆ Gl1 ∩Gl2 ∩ ...∩Glm+s−1 . Call
this set as D = { j1, . . . , jm+s−1}.
Construct a hyperplane using equation (3.15). Suppose that the equation of hyperplane is in the form of Ptz = 0
where z = (x1, . . . ,xm,y1, . . . ,ys).

• Step 6. If P has any component less than or equal to zero go to step 8, else let w = (xw
1 , . . . ,x

w
m,y

w
1 , . . . ,y

w
s ) is

defined as follows:

xw
i = max{xi j| j = 1, . . . ,n}, i = 1, . . . ,m

yw
r = min{yr j| j = 1, . . . ,n}, r = 1, . . . ,s

If
Ptz j = 0, j ∈ D
Ptz j ≤ 0, j ∈ G−D
Ptw < 0,
then Ptz = 0 is supporting. Otherwise, go to step 8.

• Step 7. If, at least, one of the m+ s− 1 members of D is a weak efficient virtual DMU, then Ptz = 0 is weak
defining hyperplane. Otherwise, it is strong defining hyperplane.

• Step 8. If another subset of G with m+ s−1 members can be found, go to step 5, else stop.
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Figure 4: Example 3.1.

4 Numerical Examples

4.1 Single output case
Table 1 shows data for 4 DMUs with two inputs and one output. Using the CCR model (2.1), the CCR-efficient

DMUs are determined to be D1, D2, D3. Remove CCR-inefficient DMU D4 from PPS and solve model (3.5) corre-
sponding to CCR-efficient DMUs D1, D2 and D3.
The following results are yielded:
By property 3.1, DMUs D1, D2 and D3 lie on the extreme rays of the PPS. Model (3.5) corresponding to DMU D1 with
l = 2 and DMU D3 with l = 1 is infeasible. So, by property 3.3 weak efficient virtual DMUs D5 = D′

1 = (1,4+β ,3)
and D6 = D′

3 = (5+α,1,5) lie on the weak defining hyperplanes which pass thought the 2th and 1th axis of inputs,
respectively. For convenience, we let α = β = 1. Therefore E ∪F = {D1,D2,D3,D5,D6} and G = {1,2,3,5,6} .
Note that model (3.5) corresponding to DMU D2 is feasible. So, by property 3.4, DMU D2 does not lie on any weak
defining hyperplane. Also
G1 = {1,2,5}, G2 = {2,1,3}, G3 = {3,2,6}, G5 = {1,5}, G6 = {6,3}.
{1,5} ⊆ G1 ∩G5, {1,2} ⊆ G1 ∩G2,
{2,3} ⊆ G2 ∩G3, {3,6} ⊆ G3 ∩G6.
H1, the first weak hyperplane, is constructed on D = {1,5}.∣∣∣∣∣∣

x1 x2 y
1 4 3
1 5 3

∣∣∣∣∣∣= 0, that yields y = 3x1.

Note that the conditions of Theorem 3.3 are held and H1 is a weak defining hyperplane including x2-axis and ver-
tical to hyperplane x2 = 0 (because the weak efficient virtual DMU, D′

1, lies on H1). Here, w = (6,4,2).
H2, the second weak hyperplane is constructed on D = {3,6}.∣∣∣∣∣∣

x1 x2 y
5 1 5
6 1 5

∣∣∣∣∣∣= 0, that yields y = 5x2.

Similarly, the conditions of Theorem 3.3 are held, and hence H2 is a weak defining hyperplane including x1-axis
and vertical to hyperplane x1 = 0 (because the weak efficient virtual DMU, D′

3, lies on H2).
Using the proposed method, it was found that DMUs D1, D2 and D3 rest on edges of the PPS. Also, DMUs D1 and D3
lie on the edge intersection of strong and weak defining hyperplanes of the PPS. Moreover, using property 3.5 there
is no any weak defining hyperplane vertical to hyperplane y = 0.

International Scientific Publications and Consulting Services



Journal of Data Envelopment Analysis and Decision Science 2017 No.2 (2017) 28-49
http://www.ispacs.com/journals/dea/2017/dea-00145/ 41

Table 1: Data of Numerical Example 3.1.

DMU D1 D2 D3 D4
x1 1 2 5 6
x2 4 2 1 1
y 3 4 5 2

Table 2: Example 2. Multiple input and output.

DMU D1 D2 D3 D4 D5
x1 2 1 2 4 3
x2 3 2 2 2 5
y1 7 3 4 6 5
y2 4 5 3 1 2

4.2 Multiple outputs and inputs case
Table 2 shows data for 5 DMUs with two inputs and two outputs. Running model (2.1) (or (2.2)) shows that

DMUs D1, D2, D4 are CCR-efficient and other DMUs are CCR-inefficient. Applying models (3.5) and (3.6) to each
CCR-efficient DMU produces the results reported in Table 3. In Table 3, ”INFES” and ”FES” denotes ”infeasible”
and ”feasible” respectively. For instance, ”INFES” in the first row and the second column means that model (3.5),
corresponding to DMU D1 with l = 2, is infeasible. So, by property 3.3, D2

1 = (2,3+α ,7,4) is a weak efficient
virtual DMU that lies on a weak defining hyperplane passing through x2-axis. using property 3.1, it was found that
all CCR-efficient DMUs lie on the extreme ray. Using properties 3.3 and 3.6 and the information of Table 3, all weak
efficient virtual DMUs can be determined (see Table 4). For simplicity, we choose α = 1. For simplicity, we rename
CCR-efficient and weak efficient virtual DMUs as follows:

U1 = D1, U2 = D2, U3 = D4, U4 = D2
1, U5 = D4

1, U6 = D1
2, U7 = D2

2, U8 = D3
2, U9 = D1

4, U10 = D4
4.

Therefore, we have:

E = {U1,U2,U3}, F = {U4,U5,U6,U7,U8,U9,U10},
G = {U1,U2,U3,U4,U5,U6,U7,U8,U9,U10},
G1 = {U1,U2,U3,U4,U5,U7,U10}, G2 = {U1,U2,U3,U4,U6,U7,U8,U9},
G3 = {U1,U2,U3,U5,U6,U9,U10}, G4 = {U1,U2,U4,U5,U7},
G5 = {U1,U3,U4,U5,U10}, G6 = {U2,U3,U6,U8,U9},
G7 = {U1,U2,U4,U7,U8}, G8 = {U2,U6,U7,U8},
G9 = {U2,U3,U6,U9,U10}, G10 = {U1,U3,U5,U9,U10}.

H1, the first weak hyperplane, is constructed on D1 = {1,2,4}, D2 = {1,2,7}, D3 = {2,1,7}, D4 = {2,4,7},∣∣∣∣∣∣∣∣
x1 x2 y1 y2
2 3 7 4
1 2 3 5
2 4 7 4

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

x1 x2 y1 y2
2 3 7 4
2 4 7 4
1 3 3 5

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

x1 x2 y1 y2
1 2 3 5
2 3 7 4
1 3 3 5

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

x1 x2 y1 y2
1 2 3 5
2 4 7 4
1 3 3 5

∣∣∣∣∣∣∣∣= 0

that yields −23x1 +6y1 + y2 = 0.

H2, the second weak hyperplane, is constructed on D5 = {1,10,3}, D6 = {1,3,5}, D7 = {1,5,10}, D8 = {3,5,10}∣∣∣∣∣∣∣∣
x1 x2 y1 y2
2 3 7 4
4 2 6 .5
4 2 6 1

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

x1 x2 y1 y2
2 3 7 4
4 2 6 1
2 3 7 3

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

x1 x2 y1 y2
2 3 7 4
2 3 7 3
4 2 6 .5

∣∣∣∣∣∣∣∣= 0
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that yields −4x1 −16x2 +8y1 = 0.

The other weak defining hyperplanes are as follows:

H3 is constructed on D9 = {1,4,5} that yields −7x1 +2y1 = 0.
H4 is constructed on D10 = {2,3,6}, D11 = {2,3,9} and D12 = {3,6,9} and D13 = {2,6,9},
that yields −27x2 +8y1 +6y2 = 0.
H5 is constructed on D14 = {3,10,9} that yields −6x2 +2y1 = 0.
H6 is constructed on D15 = {2,6,8} that yields −5x2 +2y2 = 0.
H7 is constructed on D14 = {2,7,8} that yields −5x1 − y2 = 0.

One can easily verify that the conditions of Theorem 3.3 are held and Hi, i = 1, ...,7 are defining. It is worthwhile to note that
the aforementioned PPS has only one strong defining hyperplane
H8 : −x1 −55x2 +17y1 +12y2 = 0; which is constructed on D′ = {1,2,3}.

The following results can be attained by the aforementioned example:

• There are one strong defining hyperplane and seven weak defining hyperplanes.

• The extreme ray binding from DMU U1 is the intersection of four defining hyperplanes H1, H2, H3 and H8.

• The extreme ray binding from DMU U2 is the intersection of five defining hyperplanes H1, H4, H6, H7 and H8.

• The extreme ray binding from DMU U3 is the intersection of four defining hyperplanes H2, H4, H5 and H8.

• All extreme rays are the intersection of strong and weak defining hyperplanes. Also all CCR-efficiency DMUs U1, U2 and
U3 lie on the weak defining hyperplanes.

Table 3: Example 2. The results of evaluation CCR-efficient DMUs by models (3.5) and (3.6).

DMU l q
1 2 1 2

D1 FES INFES FES INFES

D2 INFES INFES INFES FES

D4 INFES FES FES INFES

Table 4: Example 2. Weak efficient virtual DMUs.

DMU D2
1 D4

1 D1
2 D2

2 D3
2 D1

4 D4
4

x1 2 2 2 1 1 5 4
x2 4 3 2 3 2 2 2
y1 7 7 3 3 2 6 6
y2 4 3 5 5 5 1 0

4.3 Real word data
We evaluated the data of 20 branchs of a bank in Iran using the proposed method. The data was previously analyzed by

Amirteimoori et al. [1], (see Table (5)). Running the DEA model (2.1) (or (2.2)) resulted in seven CCR-efficient units as 1, 4, 7,
12, 15, 17 and 20. Using the proposed method, the equations of weak defining hyperplanes were obtained as summarized below:
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Table 5: Example 3. DMUs’ data (extracted from [Amirteimoori et al. [1], p. 689]).

input output
Branch Staff Computer Space m2 Deposits Loans Charge

terminals
1 0.9503 0.70 0.1550 0.1900 0.5214 0.2926
2 0.7962 0.60 1.0000 0.2266 0.6274 0.4624
3 0.7982 0.75 0.5125 0.2283 0.9703 0.2606
4 0.8651 0.55 0.2100 0.1927 0.6324 1.0000
5 0.8151 0.85 0.2675 0.2333 0.7221 0.2463
6 0.8416 0.65 0.5000 0.2069 0.6025 0.5689
7 0.7189 0.60 0.3500 0.1824 0.9000 0.7158
8 0.7853 0.75 0.1200 0.1250 0.2340 0.2977
9 0.4756 0.60 0.1350 0.0801 0.3643 0.2439
10 0.6782 0.55 0.5100 0.0818 0.1835 0.0486
11 0.7112 1.00 0.3050 0.2117 0.3179 0.4031
12 0.8113 0.65 0.2550 0.1227 0.9225 0.6279
13 0.6586 0.85 0.3400 0.1755 0.6452 0.2605
14 0.9763 0.80 0.5400 0.1443 0.5143 0.2433
15 0.6845 0.95 0.4500 1.0000 0.2617 0.0982
16 0.6127 0.90 0.5250 0.1151 0.4021 0.4641
17 1.0000 0.60 0.2050 0.0900 1.0000 0.1614
18 0.6337 0.65 0.2350 0.0591 0.3492 0.0678
19 0.3715 0.70 0.2375 0.0385 0.1898 0.1112
20 0.5827 0.55 0.5000 0.1101 0.6145 0.7643

The equations of defining hyperplanes binding from DMU1:

1. -972780000x1 - 35830643110x3+ 14965298195y1+ 6971185000y2=0

2. - 8755020000x1 - 322475787990x3+ 134687683755y1+ 62740665000y2=0

3. - 194556000x1 - 7166128622x3+ 2993059639y1+ 1394237000y2=0

4. -1359468485616x1 - 28494222363367.38x3+ 12093263476274y1+ 5939111853909y2+ 1073596674923.5y3=0

5. - 97278x2 - 2645864x3+ 1152988y1+ 497000y2=0

6. - 875502x2 - 23812776x3+ 10376892y1+ 4473000y2=0

7. - 194556x2 - 52917280x3+ 23059760y1+ 9940000y2=0

8. - 1359468485616x2- 22373297128800x3+ 10143985960000y1+ 4371989952000y2+ 726507524000y3=0

9. - 943354x3+ 388133y1+ 139000y2=0

10. - 42450930x3+ 17465985y1+ 6255000y2=0

11. - 303325252038x3+ 125752259800y1+ 34411902300y2+ 17703755450y3=0

12. - 286148x3+ 96226y1+ 50000y2=0

13. - 143074x3+ 48113y1+ 25000y2=0

14. - 100166891292x3+ 26451830000y1+ 17352331800y2+ 49641649000y3=0

The equations of defining hyperplanes binding from DMU4:

1. -135946848561600x1-2849422236336738x3+1209326347627400y1+593911185390900y2 + 107359667492350y3=0

2. -303325252038x3+ 125752259800y1+3441190230y2+17703755450y3=0

3. -962972121000x1-328314063906x2+888323202000y1+842460036000y3=0

4. -69807437340x1-109438021302x3+474497788800y1+535450401000y3=0

5. -30930441000x1-48184694626x2+29114103500y2+34847747500y3=0

6. -1284492135536300x1-338476850586989x3+861567778754200y1+351625903900200y2 + 793901952483300y3=0

7. -6201072000000x1-63394549535400x3+18021906285000y2+7280349255000y3=0

8. -3082802028x2-1303063920x3+2003476500y2+702186000y3=0

9. -9415572931881x2-5266914542760x3+9739254084500y1+5725497127500y2 + 787058521000y3=0

10. -315203434864350x1-1925392176272898x3+911363930110150y1+609134934067650y2 + 116178086881850y3=0

11. -402094816405800x1-774926386660479x3+506520288276700y1+385152647434200y2 + 169409773083050y3=0

12. -469929571500x1- 5215053344961x2-3555135946650x3+4096877084250y2 + 1430528892750y3=0

13. -49221399250365x1- 102872514916490.925x2-209914601960477.7x3+188771599172697.5y1 +133350621103897.5y2+ 22536162160577.5y3=0

14. -1396148746800x1-218876042604x3+948995577600y1+1070900802000y3=0

15. -498267154301400x1-675598525370802x3+412589517921900y2+312004994380200y3=0

16. -7193204732x2-3040482480x3+4674778500y2+1638434000y3=0

17. -203698200x1-47097558x3+186109800y3=0

18. -209422312020x1-328314063906x3+142349336640y1+160635120300y3=0

19. -962972121000x1-328314063906x2+888323202000y1+842460036000y3=0

20. -2094223120200x1-328314063906x3+1423493366400y1+1606351203000y3=0

21. -588646116x3+257626800y1+73971000y3=0
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22. -203698200x1-47097558x3+186109800y3=0

23. -20670240000x1-211315165118x3+60073020950y2+24267830850y3=0

24. -30930441000x1-48184694626x2+29114103500y2+34847747500y3=0

25. -156643190500x1-1738351114987x2-1185045315550x3+1365625694750y2 + 476842964250y3=0

26. -49831698600x1-67566609198x3+41263078100y2+31203619800y3=0

27. -30930441000x1-48184694626x2+29114103500y2+34847747500y3=0

28. -125676913000x1-48184694626x3+49508977400y2+87532406000y3=0

29. -125676913000x1-48184694626x3+49508977400y2+87532406000y3=0

30. -1027600676x2-434354640x3+667825500y2+234062000y3=0

31. -44732808x2+20631000y2+11556000y3=0

32. -203698200x1-47097558x3+186109800y3=0

33. -203698200x1-47097558x3+186109800y3=0

34. -320990707000x1-109438021302x2+296107734000y1+280820012000y3=0

35. -30930441000x1-48184694626x2+29114103500y2+34847747500y3=0

36. -30930441000x1-48184694626x2+29114103500y2+34847747500y3=0

37. -477909287649000x1-338476850586989x2+559061370687500y1+207010083861500y2 + 360957289402500y3=0

38. -429988020954x2+359622357000y1+162565467000y2+64387782000y3=0

39. -777810000x1-47097558x2+931920000y3=0

40. -30930441000x1-48184694626x2+29114103500y2+34847747500y3=0

41. -30930441000x1-48184694626x2+29114103500y2+34847747500y3=0

42. -30930441000x1-48184694626x2+29114103500y2+34847747500y3=0

43. -30930441000x1-48184694626x2+29114103500y2+34847747500y3=0

44. -203698200x1-47097558x3+186109800y3=0

45. -2094223120200x1-328314063906x3+1423493366400y1+1606351203000y3=0

46. -196215372x3+8587560+24657000y3=0

47. -62010720000x1-633945495354x3+180219062850y2+72803492550y3=0

48. -31520343486435x1-192539217627289.8x3+91136393011015y1+60913493406765y2+11617808688185y3=0

49. -49831698600x1-67566609198x3+41263078100y2+31203619800y3=0

50. -125676913000x1-48184694626x3+49508977400y2+87532406000y3=0

51. -203698200x1-47097558x3+186109800y3=0

52. -588646116x2+537594000y1+220161000y3=0

53. -89793064x3+17110600y2+8035800y3=0

54. -196215372x2+179198000y1+73387000y3=0

55. -269379192x3+51331800y2+24107400y3=0

56. -600x3+126y3=0

57. -135946848561600x1-2849422236336738x3+1209326347627400y1+593911185390900y2+107359667492350y3=0

58. -100166891292x3+26451830000y1+17352331800y2+4964164900y3=0

59. -1359468485616x2-22373297128800x3+10143985960000y1+4371989952000y2+726507524000y3=0

60. -303325252038x3+125752259800y1+34411902300y2+17703755450y3=0

The equations of defining hyperplanes binding from DMU7:

1. - 1284492135536300x1 -338476850586989x3 + 861567778754200y1 + 351625903900200y2+ 793901952483300y3=0

2. - 18000x1 - 54330x2 + 50598y2=0

3. - 8890645750000x1 - 4649133826135x2 -16924059161800x3 + 14494910015000y1 + 13845016272500y2=0

4. - 2163150000x1 - 1164847275x2 -1944747000x3 + 3260731500y2=0

5. - 62234520250000x1 - 32543936782945x2 -118468414132600x3 + 101464370105000y1 + 96915113907500y2=0

6. - 721050000x1 - 388282425x2 -648240000x3 + 1086910500y2=0

7. - 4200x1 - 12677x2 + 11806y2=0

8. - 9415572931881x2 -5266914542760x3 + 9739254084500y1 + 5725497127500y2+ 787058521000y3=0

9. - 3082802028x2 -1303063920x3 + 2003476500y2+ 702186000y3=0

10. - 800158117500x1 - 4184220443521500x2 -1523165324562x3 + 1304541901350y1 + 1246051464525y2=0

11. - 614548655100x1 -818367903423x3 + 609498131850y1 + 685617039000y2=0

12. - 477982287300x1 -636508369329x3 + 474054102550y1 + 533257697000y2=0

13. - 3605250000x1 - 1941412125x2 -3241245000x3 + 5434552500y2=0

14. - 533438745000x1 - 2789480295681000x2 -1015443549708x3 + 869694600900y1 + 8307009763500000y2=0

15. - 614548655100x1 -818367903423x3 + 609498131850y1 + 685617039000y2=0

16. - 409699103400x1 -545578602282x3 + 406332087900y1 + 457078026000y2=0

17. - 402094816405800x1 -774926386660479x3 + 506520288276700y1 + 385152647434200y2+ 169409773083050y3=0

18. - 1214119364x2 -218213520x3 + 1074571000y1 + 676494000y2=0

19. - 9614000x1 - 5177099x2 -8643320x3 + 14492140y2=0

20. - 40969295791344900x1 -54557041860296577x3 + 40632599291868150y1 + 45707116982961000y2=0

21. - 8498835548x2 -1527494640x3 + 7521997000y1 + 47354580000y2=0

22. - 596586144x2 + 488586000y1 + 298704000y2=0
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23. - 25236750000x1 - 13589884875x2 -22688715000x3 + 38041867500y2=0

24. - 477982287300x1 -636508369329x3 + 474054102550y1 + 533257697000y2=0

25. - 65362500x1 -46889325x3 + 70444850y2=0

26. - 24801090x1 + 13235861y2+ 8266595y3=0

27. -57054x2 + 33264y2+ 6000y3=0

28. - 1201750000x1 - 647137375x2 -1080415000x3 + 1811517500y2=0

29. - 5602500x1 -4019085x3 + 6038130y2=0

30. - 8412250000x1 - 4529961625x2 -7562905000x3 + 12680622500y2=0

31. - 171162x2 + 99792y2+ 18000y3=0

32. - 233428299102x1 + 127007416523y1 + 93543291008y2+ 84460030097y3=0

33. - 767039328x2 + 628182000y1 + 384048000y2=0

34. - 12600x1 - 38031x2 + 3541860y2=0

35. - 6000x1 - 1811000x2 + 16866y2=0

36. - 409699103400x1 -545578602282x3 + 406332087900y1 + 457078026000y2=0

37. - 5602500x1 -4019085x3 + 6038130y2=0

38. - 596586144x1 + 299539709y1 + 415833040y2=0

39. - 65362500x1 -46889325x3 + 70444850y2=0

40. - 767039328x1 + 385122483y1 + 534642480y2=0

41. - 10927074276x2 -1963921680x3 + 9671139000y1 + 6088446000y2=0

42. - 70980x2 + 42000y1 + 38808y2=0

43. - 10140x2 + 6000y1 + 5544y2=0

44. - 30930441000x1 - 48184694626x2 + 291141035000y2+ 34847747500y3=0

45. - 156643190500x1 - 1738351114987x2 -1185045315550x3 + 1365625694750y2+ 476842964250y3=0

46. - 49831698600x1 -67566609198x3 + 41263078100y2+ 31203619800y3=0

47. - 125676913000x1 -48184694626x3 + 49508977400y2+ 87532406000y3=0

48. - 1027600676x2 -434354640x3 + 667825500y2+ 234062000y3=0

49. - 44732808x2 + 20631000y2+ 11556000y3=0

50. - 477909287649000x1 - 338476850586989x2 + 559061370687500y1 + 207010083861500y2+ 360957289402500y3=0

51. - 429988020954x2 + 359622357000y1 + 162565467000y2+ 64387782000y3=0

52. - 7193204732x2 -3040482480x3 + 4674778500y2+ 1638434000y3=0

53. - 469929571500x1 - 5215053344961x2 -3555135946650x3 + 4096877084250y2+ 1430528892750y3=0

54. - 492213992503650x1- 1028725149164909.25x2 -2099146019604777x3+ 1887715991726975y1 + 1333506211038975y2+ 225361621605775y3=0

The equations of defining hyperplanes binding from DMU12:

1. - 4922139925036500x1-10287251491649092.5x2-20991460196047770x3+18877159917269750y1+13335062110389750y2 +2253616216057750y3=0

2. - 20670240000000x1- 211315165118000x3+60073020950000y2+24267830850000y3=0

3. - 49831698600000x1-67566609198000x3+41263078100000y2+31203619800000y3=0

4. - 15664319050000000x1- 173835111498700000x2-118504531555000000x3+136562569475000000y2 +47684296425000000y3=0

5. - 315203434864350x1-1925392176272898x3+911363930110150y1 +609134934067650y2 +116178086881850y3=0

6. - 6201072000000x1-63394549535400x3+18021906285000y2+7280349255000y3=0

7. - 4699295715000000x1-52150533449610000x2- 35551359466500000x3+40968770842500000y2+14305288927500000y3=0

8. - 84122500000000000x1-45299616250000000x2- 75629050000000000x3+126806225000000000y2=0

9. - 56025000000000x1- 40190850000000x3+60381300000000y2 =0

10. - 65362500000000x1-46889325000000x3+70444850000000y2 =0

11. - 477982287300000x1-636508369329000x3+474054102550000y1 +533257697000000y2=0

12. - 622345202500000000x1-325439367829450000x2-1184684141326000000x3+1014643701050000000y1 + 969151139075000000y2=0

13. - 25236750000000000x1-13589884875000000x2-22688715000000000x3+ 38041867500000000y2=0

14. - 61454865510000x1-81836790342300x3+60949813185000y1+68561703900000y2=0

15. - 72105000000000000x1-38828242500000000x2-64824900000000000x3+108691050000000000y2=0

16. - 21631500000000000x1-11648472750000000x2-19447470000000000x3+ 2607315000000000y2=0

17. - 80015811750000000x1-41842204435215000x2-152316532456200000x3+130454190135000000y1+124605146452500000y2=0

18. - 88906457500000000x1- 46491338261350000x2-169240591618000000x3+ 144949100150000000y1+138450162725000000y2=0

19. - 12017500000000000x1-6471373750000000x2-10804150000000000x3+ 18115175000000000y2=0

20. - 533438745000000000x1-278948029568100000x2-1015443549708000000x3+ 869694600900000000y1+830700976350000000y2=0

21. - 3605250000000000x1-1941412125000000x2-3241245000000000x3+5434552500000000y2 =0

22. - 144691680000000000 x1-1479206155826000000x3+420511146650000000y2 +169874815950000000y3=0

23. - 402094816405800x1-774926386660479x3+506520288276700y1+385152647434200y2+169409773083050y3=0

24. - 4165274217900000000x1-5546715789867000000x3+4131042893650000000y1+ 4646959931000000000y2=0

25. - 13219250000000000x1-7118511125000000x2-11884565000000000x3+19926692500000000y2=0

26. - 409699103400000x1- 545578602282000x3+406332087900000y1+457078026000000y2=0

27. - 39532500000000x1- 66720000000000x3+53210100000000y2=0

28. - 291662435700000x1-752132978400000x3+431589130800000y1+407006674500000y2=0

29. - 11859750000000x1-20016000000000x3+ 15963030000000y2 =0
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30. - 43749365355000x1-112819946760000x3+64738369620000y1+61051001175000y2=0

31. - 48610405950000x1-125355496400000x3+71931521800000y1+67834445750000y2=0

32. - 1976625000000x1-3336000000000x3+ 2660505000000y2=0

33. - 6588750000000x1-11120000000000x3+8868350000000y2=0

34. - 19766250000000000x1-33360000000000000x3+26605050000000000y2=0

The equations of defining hyperplanes binding from DMU15:

1. - 150697636x1+93188442y1+101467310y3=0

2. - 452092908x1+279565326y1+304401930y3=0

3. - 18000x1+12321y1=0

4. - 180x3+81y1=0

5. - 291657574659405x1-752120442850360x3 + 431581937647820y1 + 406999891055425y2 =0

6. - 43749365355x1-112819946760x3 + 64738369620y1 + 61051001175y2 =0

7. - 10927074276x2-1963921680x3+9671139000y1+6088446000y2 =0

8. - 4861040595x1-12535549640x3+7193152180y1+6783444575y2 =0

9. - 2916624357x1-7521329784x3+4315891308y1+4070066745y2=0

10. - 5334387450000x1-2789480295681x2-10154435497080x3+8696946009000y1+8307009763500y2 =0

11. - 409699103400x1-545578602282x3+406332087900y1+457078026000y2=0

12. - 8890645750000x1-4649133826135x2-16924059161800x3+14494910015000y1+13845016272500y2 =0

13. - 233428299102x1+127007416523y1+93543291008y2+84460030097y3=0

14. - 767039328x1+385122483y1+534642480y2=0

15. - 1214119364x2-218213520x3+1074571000y1+676494000y2 =0

16. - 80015811750000x1-41842204435215x2-152316532456200x3+130454190135000y1+124605146452500y2 =0

17. - 614548655100x1-818367903423x3+609498131850y1+685617039000y2=0

18. - 8498835548x2-1527494640x3+7521997000y1+4735458000y2 =0

19. - 596586144x1+299539709y1+415833040y2 =0

20. - 62234520250000x1-32543936782945x2-118468414132600x3+101464370105000y1+96915113907500y2 =0

21. - 477982287300x1-636508369329x3+474054102550y1+533257697000y2 =0

22. - 767039328x2+628182000y1+384048000y2 =0

23. - 596586144x2+488586000y1+298704000y2 =0

24. - 402094816405800x1-774926386660479x3+506520288276700y1+385152647434200y2+169409773083050y3=0

25. -49221399250365x1- 102872514916490.925x2-209914601960477.7x3+188771599172697.5y1 +133350621103897.5y2+ 22536162160577.5y3=0

26. - 477909287649000x1-338476850586989x2+559061370687500y1+207010083861500y2+360957289402500y3=0

27. - 9415572931881x2-5266914542760x3+9739254084500y1+5725497127500y2+787058521000y3=0

28. - 320990707000x1-109438021302x2+296107734000y1+280820012000y3=0

29. - 962972121000x1-328314063906x2+888323202000y1+842460036000y3=0

30. - 698074373400x1-109438021302x3+474497788800y1+535450401000y3=0

31. - 196215372x2+179198000y1+73387000y3=0

32. - 1284492135536300x1-338476850586989x3+861567778754200y1+351625903900200y2+793901952483300y3=0

33. - 429988020954x2+359622357000y1+162565467000y2+64387782000y3=0

34. - 588646116x2+537594000y1+220161000y3=0

35. - 196215372x3+85875600y1+24657000y3=0

36. - 315203434864350x1-1925392176272898x3+911363930110150y1+609134934067650y2+116178086881850y3=0

37. - 2094223120200x1-328314063906x3+1423493366400y1+1606351203000y3=0

38. - 588646116x3+257626800y1+73971000=0

39. - 135946848561600x1-2849422236336738x3+1209326347627400y1+593911185390900y2+107359667492350y3=0

40. - 194556x2-5291728x3+2305976y1+994000y2 =0

41. - 97278x2-2645864x3+1152988y1+497000y2 =0

42. - 972780000x1-35830643110x3+14965298195y1+6971185000y2 =0

43. - 875502x2-23812776x3+10376892y1+4473000y2 =0

44. - 42450930x3+17465985y1+6255000y2 =0

45. - 1359468485616x2-22373297128800x3+10143985960000y1+4371989952000y2+726507524000y3=0

46. - 303325252038x3+125752259800y1+34411902300y2+17703755450y3=0

47. - 194556000x1-7166128622x3+2993059639y1+1394237000y2 =0

48. - 943354x3+388133y1+139000y2 =0

The equations of defining hyperplanes binding from DMU17:

1. - 972780000x1-35830643110x3+14965298195y1+6971185000y2 =0

2. - 8890645750000x1+4649133826135x2-16924059161800x3+14494910015000y1+13845016272500y2 =0

3. - 8755020000x1-322475787990x3+134687683755y1+62740665000y2 =0

4. - 80015811750000x1+41842204435215x2-152316532456200x3+130454190135000y1+124605146452500y2 =0

5. - 721050000x1+388282425x2-648249000x3+1086910500y2 =0

6. - 658875x1-1112000x3+886835y2=0
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7. - 62234520250000x1+32543936782945x2-118468414132600x3+101464370105000y1+96915113907500y2 =0

8. - 62010720000x1-633945495354x3+180219062850y2+72803492550y3=0

9. - 6000x1+18110x2+16866y2 =0

10. - 5334387450000x1+2789480295681x2-10154435497080x3+8696946009000y1+8307009763500y2 =0

11. - 492213992503650x1+1028725149164909.25x2-2099146019604777x3+1887715991726975y1+1333506211038975y2+225361621605775y3=0

12. - 4861040595x1-12535549640x3+7193152180y1+6783444575y2=0

13. - 469929571500x1+5215053344961x2-3555135946650x3+4096877084250y2+1430528892750y3=0

14. - 43749365355x1-112819946760x3+64738369620y1+61051001175y2=0

15. - 42000x1+126770x2+118062y2=0

16. - 395325x1-667200x3+532101y2=0

17. - 3605250000x1+1941412125x2-3241245000x3+5434552500y2=0

18. - 315203434864350x1-1925392176272898x3+911363930110150y1+609134934067650y2+116178086881850y3=0

19. - 2916624357x1-7521329784x3+4315891308y1+4070066745y2=0

20. - 2916580607634645x1-7521216964053240x3+4315826569630380y1+4070005693998825y2 =0

21. - 25236750000x1+13589884875x2-22688715000x3+38041867500y2=0

22. - 2163150000x1+1164847275x2-1944747000x3+3260731500y2=0

23. - 20670240000x1-211315165118x3+60073020950y2+24267830850y3=0

24. - 206681729760000x1-2112940336014882x3+600670136479050y2+242654040669150y3=0

25. - 1976625x1-3336000x3+2660505y2=0

26. - 194556000x1-7166128622x3+2993059639y1+1394237000y2=0

27. - 18000x1+5433x2+50598y2=0

28. - 135946848561600x1-2849422236336738x3+1209326347627400y1+593911185390900y2+107359667492350y3=0

29. - 126000x1+380310x2+354186y2=0

30. - 1201750000x1+647137375x2-1080415000x3+1811517500y2 =0

31. - 11859750000000x1-20016000000000x3+15963030000000y2=0

32. - 10700580000x1-394137074210x3+164618280145y1+76683035000y2 =0

33. - 97278x2-2645864x3+1152988y1+497000y2 =0

34. - 9415572931881x2-5266914542760x3+9739254084500y1+5725497127500y2+787058521000y3=0

35. - 875502x2-23812776x3+10376892y1+4473000y2 =0

36. - 8498835548x2-1527494640x3+7521997000y1+4735458000y2 =0

37. - 74061281204x2-13311024720x3+65548831000y1+41266134000y2 =0

38. - 70980x2+42000y1+38808y2 =0

39. - 57054x2+33264y2+6000y3=0

40. - 3082802028x2-1303063920x3+2003476500y2+702186000y3=0

41. - 300x2+180y2=0

42. - 194556x2-5291728x3+2305976y1+994000y2 =0

43. - 171162x2+99792y2+18000y3=0

44. - 1359468485616x2-22373297128800x3+10143985960000y1+4371989952000y2+726507524000y3=0

45. - 1214119364x2-218213520x3+1074571000y1+676494000y2 =0

46. - 10927074276x2-1963921680x3+9671139000y1+6088446000y2 =0

47. - 10700580x2-291045040x3+126828680y1+54670000y2 =0

48. - 1027600676x2-434354640x3+667825500y2+234062000y3=0

49. - 10140x2+6000y1+5544y2 =0

50. - 89793064x3+17110600y2+8035800y3=0

51. - 3000x3+615y2 =0

52. - 2693791920x3+51331800y2+24107400y3=0

53. - 143074x3+48113y1+25000y2 =0

54. - 100166891292x3+26451830000y1+17352331800y2+4964164900y3=0

The equations of defining hyperplanes binding from DMU20:

1. - 1284492135536300x1-338476850586989x3+861567778754200y1+351625903900200y2+793901952483300y3=0

2. - 698074373400x1-109438021302x3+474497788800y1+535450401000y3=0

3. - 125676913000x1-48184694626x3+49508977400y2+87532406000y3=0

4. - 30930441000x1-48184694626x2+29114103500y2+34847747500y3=0

5. - 77781000x1-47097558x2+93192000y3=0

6. - 962972121000x1-328314063906x2+888323202000y1+842460036000y3=0

7. - 2094223120200x1-328314063906x3+1423493366400y1+1606351203000y3=0

8. - 320990707000x1-109438021302x2+296107734000y1+280820012000y3=0

9. - 477909287649000x1-338476850586989x2+559061370687500y1+207010083861500y2+360957289402500y3=0

10. - 248010900x1+132358610y2+82665950y3=0

11. - 233428299102x1+127007416523y1+93543291008y2+84460030097y3=0

12. - 452092908x1+279565326y1+304401930y3=0

13. - 150697636x1+93188442y1+101467310y3=0

14. - 45858x1+34962y3=0

15. - 203698200x1-47097558x3+186109800y3=0

16. - 1396148746800x1-218876042604x3+948995577600y1+1070900802000y3=0

It is worthwhile to note that there are 216 weak defining hyperplanes and there is only one strong defining hyperplane that is
constricted on DMUs 4, 7, 12, 15, 17.
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5 Conclusions

Until now, less attention has been paid regarding finding weak facet of PPS of DEA models (see Wei et al. [15]). Following
Jahanshahloo et al. [11], in this paper we proposed a method for finding all weak defining hyperplanes of the PPS of the CCR
model. To do this, the performance of each DMUs was firstly evaluated using models (2.1) or (2.2), and all CCR-inefficient cases
from the PPS were then removed. By introducing a variance of super-efficient models (see models (3.5) and (3.6)) and using
properties 3.2-3.7, the weak efficient virtual DMUs and the strong efficient DMUs are found. A supporting hyperplane was found
to be a weak defining hyperplane if at least one weak efficient virtual DMU lies on it. Using the proposed method, one can check
which CCR-efficient DMUs lie on the extreme rays (edges) of the PPS of the CCR model; which extreme DMUs lie on the weak
defining hyperplanes, and how many defining hyperplanes they are on. In addition, these hyperplanes are useful in sensitivity and
stability analysis. Our algorithm can easily be implemented using existing packages for operation research, such as GAMS.
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