Communications in Numerical Analysis

Volume 2016, No. 2 (2016), Pages 180-192

Article ID cna-00274, 13 Pages

doi: 10.5899/2016/cna-00274

Research Article

Hydromagnetic flow and heat transfer of an upper-convected Maxwell fluid in a parallel plate channel with stretching walls

K. Vajravelu1,2 *, G. Gregory2, Ronald Li1, M. Dewasurendra1, K.V. Prasad3

1Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

2Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA

3Department of Mathematics, VSK University, Vinayaka Nagar, Bellary-583 104, Karnataka, India

* Corresponding author. Email address:

Received: 15 April 2016; Accepted: 13 June 2016

Copyright © 2016 K. Vajravelu, G. Gregory, Ronald Li, M. Dewasurendra and K.V. Prasad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A study of an upper-convected Maxwell (UCM) fluid flow and heat transfer in a parallel plate channel with stretching walls in the presence of an applied magnetic field is carried out. The governing non-linear coupled equations with appropriate boundary conditions are initially cast into dimensionless form by similarity transformations. Then the resulting non-dimensional equations are solved analytically by Optimal Homotopy Analysis Method (HAM). The effects of the pertinent parameters on the velocity and temperature fields are analyzed graphically. The analysis reveals that the effect of the magnetic field is to decrease the velocity normal to the wall, but the opposite effect is observed for the temperature field. The present study is relevant to the haemodynamic flow of blood in the cardiovascular system in the presence of uniform magnetic field.

Keywords: Hydromagnetic flow; haemodynamic flow; heat transfer; Maxwell fluid; stretching sheet; skin friction; Nusselt number.


  1. B. C. Sakiadis, Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow, AIChE Journal, 7 (1961) 26-28.

  2. L. J. Crane, Flow past a stretching plate, Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), 4 (1970) 645-647.

  3. P. S. Gupta, A. S. Gupta, Heat and mass transfer on a stretching sheet with suction or blowing, Canadian Journal of Chemical Engineering, 55 (1977) 744-746.

  4. H. I. Andersson, K. H. Bech, B. S. Dandapat, Magnetohydrodymanic Flow if a Power Law Fluid Over a Stretching Sheet, International Journal of Nonlinear Mechanics, 27 (1992) 929-936.

  5. L. J. Grubka, K. M. Bobba, Heat transfer characteristics of a continuous, stretching surface with variable temperature, Journal of Heat Transfer, 107 (1985) 248-250.

  6. Cha'o-Kuang Chen, Ming-I. Char, Heat transfer of a continuous, stretching surface with suction or blowing, Journal of Mathematical Analysis and Applications, 135 (1988) 568-580.

  7. C. H. Chen, Laminar mixed convection adjacent to vertical, continuously stretching sheets, Heat and Mass Transfer, 33 (1998) 471-476.

  8. M. E. Ali, Heat Transfer Charecteristics of a Continuously Stretching Surface, Wärme- und Stoffübertragung Thermo and Fluid Dynamics, 29 (1994) 227-234.

  9. A. Chakrabarti, A. S. Gupta, Hydromagnetic flow and heat transfer over a stretching sheet, Quart. Appl. Math, 8 (1979) 73-78.

  10. K. Vajravelu, J. Nayfeh, Hydromahnetic floe of a dusty fluid over a stretching sheet, International Journal of Non-linear Mechanics, 27 (1992) 937-945.

  11. A. J. Chamkha, Hydromagnetic three-dimensional free convection on a vertical stretching surface with heat generation or absorption, International Journal of Heat and Fluid Flow, 20 (1999) 84-92.

  12. E. M. Abo-Eldahab, Hydrodymagnetic three-dimensional flow over a stretching surface with heat and mass transfer, Heat and Mass Transfer, 41 (2005) 734-743.

  13. J. C. Misra, G. C. Shit, H. J. Rath, Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching walls: Some applications to haemodynamics, Computers & Fluids, 37 (2008) 1-11.

  14. H. I. Andresson, MHD flow of a visco-elastic fluid past a stretching surface, Acta Mech, 95 (1992) 227-230.

  15. K. Vajravelu, D. Rolins, Heat transfer in a viscoelastic fluid over a stretching sheet, J Math Anal Appl, 158 (1991) 241-255.

  16. T. Hayat, Z. Abbas, M. Sajid, Series solution for the upper-convected Maxwell fluid over a porous stretching plate, Phys Lett A, 358 (2006) 396-403.

  17. V. Aliakbar, A. Alizadeh-Pahlavan, K. Sadeghy, The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets, Commun Nonlinear Numer Simul, 14 (2009) 779-794.

  18. K. Vajravelu, K. V. Prasad, A. Sujatha, Convection heat transfer in a Maxwell fluid at a non-isothermal surface, Central Eur J Phys, 9 (2011) 807-815.

  19. T. Hayat, M. Qasim, Influence of thermal radiation and joule heating on MHD flow of a Maxwell fluid in the presence of a thermophoresis, Int. J. Heat Mass Transfer, 53 (2010) 4780-4788.

  20. K. V. Prasad, A. Sujatha, K. Vajravelu, I. Pop, MHD flow and heat transfer of a UCM fluid over a stretching surface with variable thermophysical properties, Meccanica, 47 (2012) 1425-1439.

  21. K. Vajravelu, K. V. Prasad, A. Sujatha, Chiu-on. Ng, MHD flow and mass transfer of chemically reactive upper convected Maxwell (UCM) fluid past porous surface, Appl. Math. Mech. -Engl. Ed, 33 (2012) 899-910.

  22. K. Vajravelu, K. V. Prasad, S. R. Santhi, Heat Transfer in an Upper Convected Maxwell Fluid with Fluid Particle Suspension, Adv. Appl. Math. Mech, 7 (2015) 1-18.

  23. K. Sadeghy, A. H. Najafi, M. Saffaripour, Sakiadis flow of an upper-Convected Maxwell fluid, Int. J. Non-Linear Mech, 40 (2005) 1220-1228.

  24. S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall\CRC Press, Boca Raton, (2003).

  25. K. Vajravelu, R. A. Van Gorder, Nonlinear Flow Phenomena and Homotopy Analysis: Fluid Flow and Heat Transfer, Higher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg, (2012).