Communications on Advanced Computational Science with Applications

Volume 2016, No. 1 (2016), Pages 32-46

Article ID cacsa-00038, 15 Pages

doi: 10.5899/2016/cacsa-00038

Research Article

Studying influence of the wicking process on the heat transfer in a homogeneous inclined porous medium

Alireza Rahbari1,2, Mohammad Abdollahzadeh2 *

1Department of Mechanical Engineering, Shahid Rajaee Teacher Training University (SRTTU), Tehran, Iran.

2Department of Mechanical Engineering, Tehran Science and Research Branch, Islamic Azad University, Damavand, Iran.

* Corresponding author. Email address:

Received: 24 March 2015; Accepted: 08 June 2015

Copyright © 2016 Alireza Rahbari and Mohammad Abdollahzadeh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


  1. C. J. van Oss, R. F. Giese, Z. Li, K. Murphy, J. Norris, M. K. Chaudhury, R. J. Good, Determination of contact angles and pore sizes of porous media column and thin layer wicking, J. Adhes. Sci. Technol, 6 (1992) 413-428.

  2. E. Chibowski, L. Holysz, Use of the Washburn equation for surface fee energy determination, Langmuir, 8 (1992) 710-716.

  3. E. P. Kalogianni, T. Savopoulos, T. D. Karapantsios, S. N. Raphaelides, A dynamic wicking technique for determining the effective pore radius of pregelatinized starch sheets, Colloids Surf. B 35 (2004) 159-167.

  4. J. Navas, R. Alcantara, C. Fernandez-Lorenzo, J. Martin-Calleja, Pore characterization methodology by means of capillary sorption tests, Transp. Porous Med, 86 (2011) 333-351.

  5. E. W. Washburn, The dynamics of capillary flow, Phys. Rev, 17 (1921) 273.

  6. P. Cheng, W. J. Minkowycz, Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. Geophys. Res, 82 (1977) 2040-2044.

  7. W. J. Minkowycz, P. Cheng, Free convection about a vertical cylinder embedded in a porous medium, Int. J. Heat Mass Transfer, 19 (1987) 805-813.

  8. H. M. Badr, I. Pop, Combined convection from an isothermal horizontal rod buried in a porous medium, Int. J. Heat Mass Transfer, 31 (1988) 2527-2541.

  9. A. Nakayama, H. Koyama, A general similarity transformation for combined free and forced convection flows within a fluid saturated porous medium, J. Heat Mass Transfer, 28 (1995) 1041-1045.

  10. M. Sanchez, F. Sanchez, C. Pérez-Rosales, A. Medina, C. Treviño, Imbibition in a Hele-Shaw cell under a temperature gradient, Phys. Lett. A 324 (2004) 14-21.

  11. E. W. Washburn, The Dynamics of Capillary Flow, Phys. Rev, 17 (1921) 273.

  12. M. Alava, M. Dubé, M. Rost, Imbibition in disordered media, Adv. Phys, 53 (2004) 83-175.

  13. O. M. Phillips, Flow and Reactions in Permeable Rocks, Cambridge University Press, Cambridge, (1991).

  14. T. J. Babadagli, Temperature effect on heavy-oil recovery by imbibition in fractured reservoirs, Journal of Petroleum Science and Engineering, 14 (1996) 197-208.

  15. T. J. Babadagli, Scaling capillary imbibition during static thermal and dynamic fracture flow conditions, Journal of Petroleum Science and Engineering, 33 (2002) 223-239.